
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1-1-2002

Subsynth: A generic audio synthesis framework for real-time Subsynth: A generic audio synthesis framework for real-time

applications applications

Kevin August Meinert
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Recommended Citation Recommended Citation
Meinert, Kevin August, "Subsynth: A generic audio synthesis framework for real-time applications" (2002).
Retrospective Theses and Dissertations. 20166.
https://lib.dr.iastate.edu/rtd/20166

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses
and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/rtd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F20166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/20166?utm_source=lib.dr.iastate.edu%2Frtd%2F20166&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Subsynth: A generic audio synthesis framework for real-time applications

by

Kevin August Meinert

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Carolina Cruz-Neira, Major Professor

Daniel Ashlock
AnneDeane

Julie Dickerson
Govindarasu Manimaran

Iowa State University

Ames, Iowa

2002

Copyright © Kevin August Meinert, 2002. All rights reserved.

www.manaraa.com

11

Graduate College
Iowa State University

This is to certify that the master's thesis of

Kevin August Meinert

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF FIGURES ... v

LIST OF LISTIN"GS ... vii

ACKNOWLEDGEMENTS ... viii

ABSTRACT .. ix

CHAPTER 1 INTRODUCTION ... 1

RESEARCH PROBLEM ... 1
STATEMENT OF PURPOSE ... 2
SCOPE OF RESEARCH ... 3

CHAPTER 2 BACKGROUND ... 6

DIGITAL AUDIO•.. 6
Sampling .. 7
Quantizing ... 8
Digital/ Analog Conversion .. 9
Dual Representation .. 10
Distortion ... 11

COMMON AUDIO FORMATS USED IN DIGITAL COMPUTERS TODAY ... 12
DIGIT AL AUDIO SYNTHESIS ... 18

Unit Generator Language .. 19
Unit Generator Building Blocks .. 20
Fixed-Waveform Table-lookup Synthesis ... 23
Additive Synthesis and Wavestacking .. 26
Subtractive Synthesis ... 26
Non-linear or Modulation Synthesis ... 27

SONIFICATION .. 28
Motivation for Sonification ... 29
Examples of Sonification .. 30
When to Use Sonification Instead of Visualization .. 31
Requirements for Sonification Tools .. 31
Methods of Sonification .. 32

CHAPTER 3 REQUIREMENTS OF AN AUDIO SUBSYSTEM FOR IN"TERACTIVE
APPLICATIONS .. .34

SCIENTIFIC SONIFICATION ... 34
INTERACTIVE COMPOSITION AND PERFORMANCE ... 34
VIRTUAL ENVIRONMENT SONIFICATION ... 35
REQUIREMENTS .. ··· ... 36

CHAPTER 4 CURRENT TOOLS FOR INTERACTIVE AUDIO .. .40

MUSICAL INSTRUMENT DIGITAL INTERFACE (MIDI)40

www.manaraa.com

iv

CHAPTER 4 CURRENT TOOLS FOR INTERACTIVE AUDIO .. 40

MUSICAL INSTRUMENT DIGITAL INTERFACE (MIDI) ... 40
CSOUND .. 42
SUPERCOLLIDER .. 43
VIRTUAL AUDIO SERVER (VAS) ... 45
VIRTUAL SOUND SERVER (VSS) ··· 46
DIGITAL INSTRUMENT FOR ADDmVE SOUND SYNTHESIS (DIASS) ... 48
OPENAL .. 50
PORTAUDIOIPABLIO ··· 52

CHAPTER 5 SUBSYNTH ... 56

CONCEPTUAL DESIGN APPROACH ... 57
Core Audio Framework .. 59
Configuration ... 61
Task Management System .. 62

IMPLEMENTATION ... 63
Technology Choices .. 63
Core Audio Framework .. 64
Included Modules .. 71
Included Builders .. 74
Included Runners .. 76

CHAPTER 6 CASE STUDIES ... 80

SUBSYNTHMIDI ·· 80
G.A.M.E. TOOLKIT FOR SCIENTIFIC SONIFICATION ... 82

L-System Background ... 83
G.A.M.E. Music Engine Implementation ... 84

SONIX .. 85
Reconfiguration ... 86
Using Sonix ... 86
Sonix Architecture and Design ... 88

CHAPTER 7 DISCUSSION OF RESULTS ... 93

BENEFITS ... 93
LIMITATIONS ... 94

CHAPTER 8 CONCLUSION ... 95

CHAPTER 9 FUTURE WORK .. 97

Appendix A ... 100

Appendix B ... 103

Appendix C ... 105

BIBLIOGRAPHY ... 107

www.manaraa.com

v

LIST OF FIGURES

Number

FIGURE 1. SAMPLING A 770HZ SINUSOID AT 700Hz .. 7

FIGURE 2. ERRORS DURING QUANTIZATION OF A SMOOTH CURVE ... 9

FIGURE 3 TIME DOMAIN REPRESENTATION OF A SIGNAL.. ~ .. 10

FIGURE 4. FREQUENCY DOMAIN REPRESENTATION OF A SIGNAL. .. 10

FIGURE 5. SINGLE AUDIO CHANNEL OF PCM DATA IN MEMORY .. 13

FIGURE 6. NONINTERLACED PCM AUDIO DATA WITH N NUMBER OF CHANNELS 14

FIGURE 7. INTERLACED PCM AUDIO DATA .. 14

FIGURE 8. UNIT GENERATOR ... 19

FIGURE 9. AN ENVELOPE UNIT GENERATOR ... 21

FIGURE 10. AN ENVELOPE GENERATOR DIRECTLY CONTROLLING THE AMPLITUDE OF ANOTHER

UNIT GENERA TOR ... 21

FIGURE 11. TYPICAL SIGNAL FOR AN ADSR ENVELOPE GENERATOR .. 22

FIGURE 12. MULTIPLICATION AND ADDITION UNIT GENERATORS .. 22

FIGURE 13. EXAMPLE OF A MULTIPLIER USED TO CONTROL AMPLITUDE ... 23

FIGURE 14. A DIGITAL OSCILLATOR ... 24

FIGURE 15. ONE PERIOD OF A SINE WAVE ... 25

FIGURE 16. THE UNIT GENERATOR SYMBOL FOR A FILTER ... 27

FIGURE 17. AMPLITUDE MODULATION ILLUSTRATED .. 28

FIGURE 18. PORTAUDIO PRODUCER-CONSUMER DIAGRAM ... 53

FIGURE 19. A SUBSYNTH MODULE ... 56

FIGURE 20. FRONT PANEL OF A HARDWARE MODULAR ANALOG SYNTHESIZER 57

www.manaraa.com

vi

FIGURE 22. SUBSYNTH UNIT GENERATOR DESIGN [UML] ... 60

FIGURE 23. AUDIO SYNTHESIS NETWORK AUTHORING TOOL. ... 62

FIGURE 24. THE PRODUCER CONSUMER PATTERN ... 66

FIGURE 25. PRODUCER/CONSUMER IMPLEMENTATION IN SUBSYNTH [UML]. 67

FIGURE 26. AUDIO INPUT STREAMS [UML]. ... 69

FIGURE 27. AUDIO OUTPUT STREAMS [UML] .. 70

FIGURE 28. SUBSYNTH MODULES [UML] ... 73

FIGURE 29. SUBSYNTH BUILDER UML DIAGRAM ... 75

FIGURE 30. UML DIAGRAM FOR THE INSTRUMENT TYPE .. 76

FIGURE 31. SAMPLEBUFFERDATA TYPE .. 77

FIGURE 32. SUBSYNTH TASK MANAGEMENT ... 79

FIGURE 33. THE SCHEDULER ABSTRACT INTERFACE ... 79

FIGURE 34. THE SUBSYNTHMIDI APL .. 80

FIGURE 35. L-SYSTEM STRING ELEMENT.··· 83

FIGURE 36. L-SYSTEM UML DIAGRAM ... 84

FIGURE 37. UML DIAGRAM OF THE SONIX APPLICATION PROGRAMMING INTERFACE (API) 89

FIGURE 38. THE SONIX SOUND OBJECT SYSTEM [UML] .. 91

FIGURE 39. SONIX PLUGINS .. 92

FIGURE 40. TIME MEASUREMENT OF THE YIELD() FUNCTION .. 95

www.manaraa.com

vii

LIST OF LISTINGS

Number

LISTING 1. A SIMPLIFIED UPDATE() PROCEDURE .. 65

LISTING 2. EXAMPLE SUBSYNTHMIDI CONFIGURATION FILE .. 81

LISTING 3. How TO RECONFIGURE SONIX AT RUNTIME ... 86

LISTING 4. CODE TO SETUP A SONIX SOUND ... 87

LISTING 5. CALL SONIX::STEP() IN THE APPLICATION'S FRAME FUNCTION 87

LISTING 6. EXAMPLE C++ PROGRAM THAT USES SONIX TO PLAY A SOUND USING SUBSYNTH 88

LISTING 7. CODE TO STARTUP AND INITIALIZE SONIX TO USE THE SUBSYNTH AUDIO

SUBSYSTEM .. 89

LISTING 8. EXAMPLE OF AN INSTRUMENT DEFINED IN CSOUND'S INSTRUMENT DEFINITION

SCRIPTING LANGUAGE .. 100

LISTING 9. EXAMPLE OF A SUPERCOLLIDER SCRIPT ... l 01

LISTING 10. AN EXAMPLE OF A SUBSYNTH INSTRUMENT DEFINITION FILE 102

LISTING 11. TEMPLATE METAPROGRAMMING AUDIO FORMAT CONVERSION ROUTINE ! 04

LISTING 12. EXAMPLE MUSIC L-SYSTEM, USING THE L-SYSTEM XML SCHEMA SPECIFIED BY

G.A.M.E ... 106

www.manaraa.com

viii

ACKNOWLEDGEMENTS

I would like to thank my wife Laura for her patience with my long nights and weekends during

grad school. I would like to thank my parents Mike and Susan for their support in my hobbies and

education while I was a kid, and instilling an appreciation for science, music, and art, which drives

me to this day. During my time at the Virtual Reality Applications Center from 1996 to 2002, I have

met many people who have influenced me about art, music, public speaking, writing, good

engineering philosophies and coding techniques. In addition there have been simply many friends

and good times, many lunches, movies, and trips all over the world. For these I thank, in no order at

all, Lew Hill, Allen Bierbaum, Ben Scott, John Walker, Benji Bryant, Herb Sawyer, Terry Welsh,

Patrick Hartling, Justin Hare, Todd Furlong, Perry Miller, Matthew Steinke, and Laura Arns. For his

help in implementing the initial prototype of Subsynth for a class project in 2001, I would like to

thank Christopher Just. Lastly I want to thank Dr. Cruz-Neira for having me as her student; Iowa

State University would have been quite different without her.

www.manaraa.com

ix

ABSTRACT

Today we find ourselves overwhelmed with information, and are faced with the challenge of how

to input data into the human mind faster and more effectively. Visual display devices such as those

found in television and computer displays are the most common method we use to get new

information. One medium that is very effective, but not as common as visual presentation, is audio.

Audio represents yet another channel of information that the human brain can easily perceive, and can

even be processed in parallel to other channels such as visual, touch or smell. A subset of audio

presentation methods that are useful is non-speech audio, such as sounds from music, sound effects,

or warning tones. Non-speech audio may also be desirable when presenting many elements of data at

one time. Examples of this can be found when simulating virtual environments such as three-

dimensional games, or scientific simulations such as the visualization of genetic data. The audio

needs for these kinds of applications can be met through the application of audio synthesis

techniques. Audio synthesis is the field that investigates methods to generate and manipulate

arbitrary sound in response to user input or data events. Until recently audio synthesis capabilities

have been confined to specialized real-time hardware devices, or non real-time (offline) rendering on

generic personal computers. In the last few years, personal computers capable of performing audio

synthesis methods with real-time response are now affordable and commonplace. As personal

computer technology advances, specialized real-time audio synthesis applications are becoming

available. However, most of these applications are customized to specific software and hardware.

These PCs we speak of run soft real-time operating systems such as Windows, Linux, Irix, and OSX.

Real-time audio synthesis on these systems is possible, and several specialized implementations exist.

One problem with custom solutions are limitations in scalability which affect how many simultaneous

sounds can play, extensibility which affects how a user can add custom extensions to the synthesis

tool, portability which affect what hardware the synthesis software can be run on, and generality

which affect what types of synthesis methods one can choose. Alternatives to custom specialized

www.manaraa.com

x.

tools are emerging that allow synthesis of interactive and arbitrarily specified sound. We present a

new audio synthesis toolkit,. called "Subsynth", to facilitate building system independent and arbitrary

audio synthesis components that are intended for use in real-time applications. To achieve this

usability, Subsynth provides a cross platform and extensible software design. Subsynth runs in

software on the same PC or workstation as the application that uses it. Applications use Subsynth

through the C++ programming language. This thesis focuses on the approach taken to specify,

design, and implement Subsynth as well as the benefits derived from this approach.

www.manaraa.com

1

CHAPTER 1 INTRODUCTION

Research Problem

The sound processing power of computers has significantly increased in recent years to the level

that most personal computers can store, reproduce, and transmit sound in digital format, i.e. digital

audio. The process of generating and manipulating digital audio is usually referred to as digital

sound synthesis. Synthesized sounds can be generated from existing sounds or from mathematical

and physical models. Current digital audio capabilities in computers are enabling the possibility to

create original sounds, mimicking existing instruments and voices, and creating sonic environments.

These synthesized sounds are being used in many application domains; For example, virtual

environments use synthesized sound to give users feedback about the state of virtual objects, or create

environmental cues; scientific sonification makes use of sound synthesis to aurally display data;

interactive music applies sound synthesis techniques to allow composers to dynamically control

streams of audio events during a live performance.

There are a variety of existing sound synthesis tools available, both software and hardware based,

varying in scope, implementation and cost. There are two approaches to these tools. One approach is

with low-level toolkits, close to the hardware and operating system, which require additional

programming to manipulate the sound. Another approach is end-user applications, generally built

from the low-level toolkits, which are accessed with a graphical user interface (GUI).

Audio synthesis toolkits are often implemented in specialized audio hardware due to their

computational needs. Generally, most tools implemented in hardware cannot migrate or scale to other

systems and configurations beyond those of their original design, limiting their use by a wide range of

users. Lately personal computers have become fast enough to support software-based audio

synthesis, which potentially enables the audio generation to happen on a heterogeneous mix of

computing platforms, including the ability to run on the same system as the end-user application.

www.manaraa.com

2

Software audio synthesis has the potential to provide the features of scalability, portability, and

generality to end-user applications. When audio synthesis tools are not scalable, they limit the

growth of audio capabilities for new applications. When these tools are not general, then it is

possible they will not fit the task, forcing a developer to use combinations of audio tools or writing

new ones. When using tools that are not portable, applications that are otherwise portable cannot

migrate to other systems. This thesis addresses those issues by presenting an audio synthesis toolkit

design for the creation of interactive audio applications that can be portable, scalable, and reusable

across heterogeneous underlying audio hardware capabilities and computer systems.

Statement of Purpose

The research presented in this document addresses the generality, scalability, and portability

problems associated with real time audio synthesis toolkits used by end-user interactive applications.

The research focuses on the design and development of Subsynth, a low-level audio synthesis toolkit

for building higher-level real-time audio components for use in virtual environments, scientific

sonification, and interactive music composition and performance.

Scalability in Subsynth is achieved by decoupling the sound generation from the hardware,

allowing applications to transparently increase their audio capabilities as more powerful audio

hardware becomes available. Generality in Subsynth is achieved by using a modular design, low

coupling of components, and parameterization of configuration information, enabling reusability of

audio synthesis components. Portability is achieved by Subsynth's hardware and operating system

independent implementation. In addition Subsynth is distributed as an Open Source product, so

hopefully a large community of users will benefit from using it, and audio developers will be able to

enhance it and evolve it as new technology in audio synthesis becomes available.

www.manaraa.com

3

Subsynth is intended to be a flexible layer to support the development of higher-level audio tools

for interactive audio applications. The goal is not an interface to audio for laypeople but rather a

scalable, portable, and open audio subsystem architecture, built around the concepts of audio

synthesis, to make possible a wide range of audio applications.

Scope of Research

The scope of this work applies to interactive audio for virtual environments, scientific

sonification, interactive music, and general audio playback.

The research was performed in the following stages:

1. Define requirements specific to real-time audio applications

We first needed to analyze the application domains of virtual environments, interactive audio, and

scientific sonification; then we identified their audio requirements. To help understand the

requirements, existing tools were examined, and some prototypes were developed.

2. Analyze existing audio subsystems

From the requirements addressed in the previous step, we investigated how existing tools

addressed them. We noted strengths and limits, and used these to guide our design.

3. Design of Subsynth based upon requirements

By analyzing existing audio tools in step two, and combining that with the requirements found in

step one, we were able to define a design for Subsynth. Iterating between steps one, two, three and

four yielded a process of iterative refinement used to finalize the design of Subsynth.

4. Implementation

Once we had a design for Subsynth we implemented the core framework, which includes audio

generators and processors, and the methods in which to configure them generically. A stable core

allowed multiple developers to work on separate components at the same time. Using the

implemented core framework, we created extensions to enhance the functionality of the toolkit. We

also developed libraries and applications on top of the overall tool. This usage of the framework

www.manaraa.com

4

helped us to see how well the design of the framework held up, and it caused us to look for new ways

to improve the framework design.

5. Develop case studies
With a stable core and a set of useful features in place, we were able to write applications to

exploit the benefits of the Subsynth software. To test the real-time and functional capabilities of

Subsynth, we used its audio synthesis capabilities in the context of generating music. Also, we

noticed that one of our early prototype sound toolkit designs (called Sonix) could be implemented in

terms of Subsynth. Sonix turned out to be much too simple for the generalized requirements of

Subsynth but was useful to a very common computer audio use. With this new tool Sonix, we can

provide a high level and simple interface on top of Subsynth that enables a novice programmer to use

audio quickly.

6. Discuss Results and Future Work

With the research completed, we are able to reflect upon the successes and the failures. This is

the last iteration before the completed research, marking the current state of Subsynth. Sharing of

results enables other researchers to understand the effectiveness of the research and communicates to

future researchers where to go next.

The research stages are presented in this document as follows:

www.manaraa.com

5

• Chapter 2 covers background material and definitions for Digital Audio, Computer Music,

and Sonification.

• Chapter 3 outlines the needs of an interactive audio tool.

• Chapter 4 illustrates stage two of the research by presenting an overview and

analysis of existing interactive audio tools.

• Chapter 5 satisfies stages three and four of the research by describing the

analysis, design, and implementation of Subsynth.

• Chapter 6 shows stage five of the research by showing case studies where higher level tools

have been built upon Subsynth.

• Chapters 7, 8, and 9 satisfy stage six of the research by discussing the results and future work

needed for Subsynth.

www.manaraa.com

6

CHAPTER2BACKGROUND

Digital Audio

Most computers today have audio capabilities that range from producing simple sounds triggered

by user interactions to the low level rendering of high quality music. These audio capabilities are

possible through the digital representation of sound. In the real world, sound travels as longitudinal

waves compressing and expanding the air. If we imagine a molecule of air being pushed by the

waves, we can represent the sound by a function of time x(t), where x is the displacement of the

molecule (air pressure). To represent sound in a computer, the time variable t and the pressure

variable x(t) must be discretized by two processes called sampling and quantizing

[Dodge97] [Steiglitz96].

Sampling is the process of taking measurements over time resulting in a discrete series of values.

Quantizing is the process of clamping each measurement to one of a discrete range of values. Usually

each measurement is called a sample, while the entire waveform is called the signal. Samples can be

obtained by taking individual measurements from sound signals. In addition, samples can be

generated procedurally, which is common in sound synthesis, and they can be processed using

manipulative functions such as distortion or filtering, which will be explained later. Understanding

this process of sampling and quantization is important to this thesis work. Because Subsynth is an

audio synthesizer, it will need to generate and process samples over time. The audio synthesis

algorithms that do the generation and processing need to be aware of the sampling rate, and the

resolution at which pressure values are quantized.

Sampling

Sampling is the process of taking pressure measurements from a signal over time. Sampling

theory tells us that when representing a signal digitally, there must be two times the number of

www.manaraa.com

7

samples per second than the highest frequency expected to reproduce [Steiglitz96]. This highest

possible frequency is called the Nyquist frequency. It represents the highest reproducible frequency

possible when using a given sampling rate. Nyquist tells us that, for a given sampling rate, the

maximum frequency that is representable is always one half the sampling rate. Therefore, the

sampling rate always needs to be more than twice as high as the highest frequency that exists in the

sampled signal. To understand this, imagine sampling a steady single-frequency signal at a lower rate

than the signal's original frequency (Figure 1). The result is that the sampled data would be missing

much detail since we are trying to capture frequencies well above the Nyquist frequency, which

would be around 350Hz in the figure.

t I i l l J
': .. ·, ,:
I . i · ~ · ! 'I,.,, .
1 l 11] ·; !1 'I I
i I "' I I I, i , Ii'' 'I' I, 1 I l ' . ! ';' l i i .· 1!

~i I I: ! I
I 1.: ~I:

11 !
I

Figure 1. Sampling a 770Hz sinusoid at 700Hz.

In Subsynth, the sampling rate needs to be considered so that audio signals are generated and

processed at the same rates. The Nyquist frequency is very important since it determines the highest

possible frequency tone that a synthesizer can generate. To generate any sound, a synthesizer needs

to sample existing signals, whether they are from the real world, from pre-recorded sounds, or from

procedural functions. In pre-recorded sounds, even though represented digitally, they can be sampled

at higher or lower rates to achieve a change in frequency. In procedural functions, for example f(t),

they need an increment int (time) each time the synthesizer needs to get a new value. Each call tof(t)

is considered one sample.

www.manaraa.com

8

Quantizing

Quantizing is the process of representing a signal's pressure values with some finite bit-length

word. Computers today are able to represent a signal with no noticeable artifacts due to word length.

It has become practical to use 32 bits or more per sample. Artifacts from smaller word lengths occur

because of error. For example, if a pressure value at a given time sample is 12349.5, but during

quantization the value is clamped to a number in the set of integers, then this error and many others in

the signal may become noticeable when listening to the signal as a whole.

To visualize this phenomenon of quantization error that we have just explained, see Figure 2. It

is important to notice that whenever the computer samples a signal, whether originally from the

natural world or from some mathematical function, the resulting digital signal will have distortions

proportional to the word length chosen to represent the signal. To enhance sound clarity in an audio

synthesizer such as Subsynth, a large word length should be chosen, but not so large that performance

is impacted. Larger sizes mean that more data will have to be processed, although some processors

have specialized units available that can make processing of larger sizes actually faster than using

smaller sizes. Currently 32-bit floating-point values work well on modem processors.

Time--->
Figure 2. Errors during quantization of a smooth curve.

www.manaraa.com

9

Digital/ Analog Conversion

To further understand the relationship between real audio signals and digital ones, we discuss a

process to convert between them. In the real world, audio signals exist as an infinite series of

pressure values, while in a computer, they are represented by a finite series of discrete pressure

values. A conversion process is used to go between the real world and the computer representations

of any audio signal. Sampling and quantizing achieve this conversion process. Conversion is done

by a piece of hardware called the analog to digital converter (ADC), which is usually a small

integrated circuit (IC) computer chip. To sample, the chip measures the incoming sound pressure

value at regular intervals called the sampling rate. To quantize, each sampled value is then clamped

to one of a discrete range of values (Figure 2).

When reproducing sound, the system needs to convert the digital signal back to an analog format

suitable for speakers, headphones, or other analog equipment. This reverse conversion process is

done with a similar IC called a digital-to-analog converter (DAC). Conversion from continuous to

discrete and vice versa is important to Subsynth to help understand the relationship between natural

audio signals and those being generated and manipulated.

Dual Representation

Computers represent sound in terms of digital signals, but there are two ways to represent them.

A digital signal can be represented as a waveform (pressure versus time) (Figure 3) or as a spectrum

(frequency versus time) (Figure 4). Pressure vs. time is very common and is the usual method of

storing audio signals, however either representation is useful in different situations. The waveform

representation is useful when manipulating aspects of time, while the spectrum representation is

useful when manipulating aspects of frequency.

www.manaraa.com

10

... +1
@ /'\ I\ /'\ (' 'i I

:J ' ! / ', I \ (/) 0
,. I I '•)

(/) f-- ---r
/ ~

~
I I :'

I
I \~/ i ' Q •,

~v/
T -1

Time --•
Figure 3 Time domain representation of a signal.

(lJ
"Cl
:::J
±:
Q.

E
<(

0
20Hz Frequency 22050Hz

Figure 4. Frequency domain representation of a signal.

Each representation may be converted to the other using a Fourier transform. There is an

efficient version of this algorithm suitable for real-time use called the Fast Fourier Transform (FFT)

[Steiglitz96]. Conversion is appropriate when manipulations in one domain are easier to think of or

more efficient to compute than in the other domain. The waveform is constructed from the spectrum

by generating sinusoids over time with the list of frequencies.

These two representations are important to a digital synthesizer that needs to perform operations

in each time or frequency domain. For example, to change the pitch or frequency of a tone without

affecting the duration, the synthesizer will use an algorithm that changes the frequency domain

attributes of the waveform. To add echo effects, the synthesizer should use the time domain

representation since an echo is dependent on the sound propagation time through the air. There are

many effects possible when considering this representation duality.

www.manaraa.com

11

Distortion

One method of manipulating an audio signal is distortion. Distortion can be qualitatively "good",

for example in the case of vibrato, which is a method of modulating the frequency of a tone slightly

over time. Distortion can also qualitatively be "bad", in the case when unwanted perturbations

happen to a signal, which we will describe next. It is usually important to minimize distortion in a

digital audio system to minimize perceivable artifacts. There are three types of unwanted distortion:

frequency, amplitude, and phase distortion [Steiglitz96].

Frequency distortion is caused by errors in an electronic device, either through faulty electronics,

or digital effects such as round-off and precision errors. For example, frequency distortion could

occur when specifying a given frequency, and the synthesizer creates a tone with a frequency that is

off by some amount. For example, this could happen when converting a control signal into a

frequency where the conversion process is faulty or uses approximations. Code optimizations are

sometimes used which choose speed over accuracy. Control signals are usually represented linearly

for intuitive use by humans, while frequency is on an exponential scale, as illustrated by the fact that

a given pitch doubled in frequency, sounds like the same pitch an octave higher to the human ear.

Amplitude distortion is the most common, and is caused by the non-linear response of a device to

the input signal amplitude. Non-linearities occur, for example, when boosting a signal above the

maximum limits that the hardware or numerical representation allows. This is often called clipping

the signal.

Phase distortion can occur when there is some latency in a particular spectrum. This can occur in

hardware when using separate speakers for bass and treble. Alternatively it can occur with a digital

system that processes different components of the spectrum with different latencies.

www.manaraa.com

12

In a synthesizer, distortion should be avoided except where explicitly needed during processing.

For example, when reproducing a tone verbatim, care should be taken to avoid quantizing the sound

pressure values outside the possible ranges that the datatype will hold. This is an example of

clipping, which is distortion that is usually undesired. For an example of distortion that is desired, see

the section later on modulation synthesis. Modulation synthesis can distort one signal using another

signal to achieve effects such as tremolo and vibrato.

Common Audio Formats Used in Digital Computers Today

This section covers the practical issues of implementing the digital audio representation inside a

computer. It gives several common data formats that are used in synthesis applications and forms a

practical guide for how to represent digital audio in the Subsynth synthesizer.

An audio format is a specification of how to represent one or more audio signals in computer

memory, some examples of which could be hard disk, RAM, optical disk, or digital audiotape. These

media types have uses ranging from long-term audio storage for archival to short term storage for

immediate playback. Some formats require more processing than others to retrieve. Each format has

strengths and limitations, and here we will discuss in detail PCM, WA V, AIFF, MP3, and OGG, the

most popular audio formats.

These formats range from open public standards to closed proprietary formats. MP3, which is a

closed format, is not open but is in wide use and generally perceived to be open. Closed formats such

as MP3 can have patents, which may be claimed at a later date. When choosing to use one of these

formats, it is good to consider these issues in addition to the technical merits.

PCM

Pulse Code Modulation, or PCM, is the most common format for storing uncompressed digital

audio [Steiglitz96][Roads96]. It is the format found on compact discs and is the intermediate format

www.manaraa.com

13

used to transmit audio data to a computer's sound card during playback of any audio file whether

during game play, virtual environment usage, or simple playback of a music album. The PCM audio

format consists of an array of sound pressure levels sampled over time (Figure 5). The number of

samples per second is the sampling rate, and the bit width of each sample affects the quantization.

There can be many of these arrays to represent sound channels. Sound channels are used, for

example, in sending discrete information to individual speakers, or to other audio components for

further processing. Each sound channel may be interlaced (Figure 7) or separated (Figure 6).

Interlaced PCM audio format is the most common format because each sample in a given frame is

readily available as a result of their close grouping in memory.

Figure 5. Single audio channel of PCM data in memory.

Chan O I O 11 12 I
Chan 1 I 0 11 12 I

I n I
I " I

Figure 6. Noninterlaced PCM audio data with N number of channels.

www.manaraa.com

14

Frame

L R L R

Frame
.-,
,;:. 3

:=rame
.-,
,;:. 1 ... 1 n

;:rame

Figure 7. Interlaced PCM audio data.

PCM is a fundamental audio data format. In practice, though, PCM has its strengths and

weaknesses. Strengths include quality and lossless representation of an audio signal. Weaknesses in

PCM are in its size, which can make distribution of recorded material more expensive. There is much

more data in PCM than the human brain can process. For example, each minute of 44100Hz 16bit

stereo PCM data takes about I 0 megabytes of storage. In Subsynth, and in many other software

synthesizers such as the ones we review in this thesis, audio is processed in the fundamental PCM

format.

WAVPCM

The WA VE file format, or WA V, is a format for storing digital audio data [WavSpec]. It

supports many different combinations of encoding types, bit resolutions, sample rates, and channels.

The most simple and common encoding used in the WA V file format is the uncompressed PCM

format mentioned earlier, or WA V PCM. WA V also supports a variety of other encoding methods,

making it a sort of "catch all". WAV also stores some additional meta data for cue points, play lists,

and instrument data. A cue point specifies a marker to a specific offset within the data. A play list

specifies a play order for a series of cue points. The instrument definition is used to specify

www.manaraa.com

15

information useful to wave table synthesis such as gain, tuning, and loop points. The WA V format is

very common on computers running the Microsoft Windows operating systems.

The strength of the WA V PCM format is that it can very closely match the original recording,

especially if the PCM data was taken verbatim from a compact disc recording. The weakness of

WA V PCM is in its size, where CD quality stereo PCM data is about 10 megabytes per minute. With

the instrument data field definable, the WA V format would be good for audio synthesis applications.

In Subsynth, WA V PCM is used to read and write sounds from the computer's file system. The

following formats we describe in this section (AIFF, MP3, OGG) could be used but currently are not

supported, we explain them because they would be useful to have in a synthesizer such as Subsynth.

AIFF

Audio Interchange File Format, or AIFF, is another format similar to the WAV format

[AiffSpec]. It also supports PCM encoding, as well as other meta data to describe instrument

parameters such as loop points and MIDI note value. AIFF format is primarily found on the Apple

operating systems, but is also common on some variants of Unix such as SGI' s IRIX. With respect to

PCM encoded data, the strengths and weaknesses of AIFF are roughly the same as the WAV format.

MPEGLayer3

MPEG Layer 3, or MP3, is an audio format that allows a high compression ratio while

maintaining sonic quality [MP3Fraunhofer][MP3Spec]. MP3 format uses a perceptual encoding

technique based on knowledge of human psychoacoustics to achieve compression up to eleven times

smaller than the original uncompressed audio signal.

www.manaraa.com

16

Encoding of MP3 data removes both absolute and perceptually redundant information and is

performed using two compression techniques, one which is lossy1 and based on mathematical models

of human psychoacoustics, and one which is lossless2• First, the source audio data is transformed to

its frequency domain equivalent. Then, for each frame, the frequency spectrum energy distribution is

analyzed and compared to models of human hearing. Based on human psychoacoustics, certain

frequency components can be discarded. Some cases where certain frequencies are not needed are:

• When two frequencies are very close, the human brain usually only hears one of them.

• When one frequency is much louder than another, the human brain may not hear the quiet

one.

• When frequencies are outside the range of normal human hearing, they will not be heard.

After unneeded frequencies are culled out using lossy compression, then a lossless compression

technique called "Huffman Encoding" is applied. This is a standard compression algorithm, similar

to the common ZIP compression, which removes any redundant data left in the audio stream

[Murray96].

The data in an MP3 file is broken into frames of a few milliseconds in length, each frame with a

32bit header preceding it that describes the bit rate, sampling rate, mpeg version, a data checksum,

and other bits that describe the file such as whether it is copyrighted or an original file. The data part

in each frame is encoded by frequency, which during playback, can be converted to the time domain

form.

1 Lossy refers to a data compression technique that actually reduces the amount of information in the data,

rather than just the number of bits used to represent that information. This technique's approach is based on the

assumption that the removed information is not important for the quality of the data, which is usually an image

or a sound.

2 Lossless refers to a data compression technique that retains all the information in the data, allowing it to be

fully recovered by decompression.

www.manaraa.com

17

Strengths of MP3 include its very small size in relation to PCM. For CD quality stereo the

general rule is about one megabyte per minute. This is very important for small-memory embedded

devices, storage of large audio databases, and for transmission of audio over slow network

connections. The perceivable quality of MP3 is very good, where most people cannot tell the

difference between MP3 and PCM. One very useful application of this technology is in collaborative

virtual environments, where upon connection, a client may need to download or refresh their copy of

the world database. MP3 technology, with its very small memory footprint, brings audio in

collaborative virtual environments to a wide audience of users who may have very slow connections.

Weaknesses of MP3 are that the format is lossy, and while it usually cannot be perceived, the

lossiness is perceivable by certain people with sensitive hearing. Also, artifacts from the lossy

compression will build up over time as the same piece of audio is repeatedly compressed and

decompressed. One other point to mention about MP3 is that it is a proprietary format whose patent

is owned by Fraunhofer. This means that, technically, any use of MP3 must pay royalties to

Fraunhofer.

OGG Vorbis

OGG Vorbis, or "OGG", is a format similar to MP3, but developed to be completely patent free.

It offers an open standard freely available to anyone. It has all the strengths of MP3, but with better

quality for smaller file sizes [Ogg]. OGG, like MP3, is also lossy but is not restricted by patents. For

open source and public domain applications where data size is a concern, OGG would be a good

solution. Synthesis applications should be aware of the processing needed to convert OGG and MP3

to the PCM format, which is useful to audio synthesis algorithms. OGG is not supported yet in

Subsynth, but should be in the future in order to facilitate high compression for the fast distribution of

data.

www.manaraa.com

18

Digital Audio Synthesis

Digital audio synthesis is a way to generate the time-domain sequence of numbers that represents .

the samples of an audio waveform. In short, sound synthesis is a way to generate sound. There are

many ways to synthesize sound, each allowing a different method of control. Audio synthesis

capabilities are important to Subsynth giving us methods to produce audio signals than can be

modified in real time. The audio synthesis methods we will examine are as follows:

• Table lookup synthesis generates waveforms by sampling a stored function representing a

single cycle.

• Additive synthesis generates the individual frequencies of a complex tone, each with its own

loudness curve (or envelope).

• Subtractive synthesis begins with a complex tone and filters it.

• Non-linear synthesis uses frequency modulation and wave-shaping to give simple signals

complex characteristics.

To specify these forms of audio synthesis, and combinations of them, a visual modeling language

is available called the "unit generator language". This language translates into the basic framework

for Subsynth that provides a method to generically hook together audio generation and processing

modules. Next we describe this language, and then we use this language as a basis to describe several

audio synthesis methods.

Unit Generator Language

When the Unit Generator visual language was developed, it was considered a very significant

development in audio synthesis language development. Many kinds of audio synthesis algorithms are

specifiable using the unit generator language. The first audio synthesis language using the unit

generator concept was Music III by Max V. Mathews and Joan Miller in 1960 [Roads96].

www.manaraa.com

19

Unit Generator

' ' ' v

Parameter Input(s)

Figure 8. Unit generator.

Unit generators are connectable signal processing modules that take as input zero or more audio

signal streams or single valued parameters [Roads96][Dodge97][Moore98]. Shown in Figure 8, unit

generators consume real-time and parameterized input, and produce real-time output signals that can

be connected to other unit generators. The information carried in these real-time signals can be

audible sound or for high-resolution control. After processing, a signal is output at zero or more data

streaming outputs. A sink, which is a unit generator with only inputs, is used to represent a processor

with no output onto the defined sound network. Sinks are often used to represent transport of the

audio data to the outside of the system, for example to a sound card or other subsystem external to the

synthesis software. Often each source unit generator is called a "voice". When connected, the

network of unit generators form an instrument or "patch" that can generate a sound signal. Many

commercial synthesizers use the concept of patch to represent a single instrument, or more

specifically, a predefined configuration of a unit generator network. In practice, the patch may or

may not be implemented as flexibly and as modularly as the unit generator language. The concept is

www.manaraa.com

20

an effective way to think about what is happening in the synthesis algorithm regardless of how it is

implemented.

Unit Generator Building Blocks

Before we introduce some audio synthesis methods, the anatomy of unit generators, and several unit

generator types should be understood first. These types are used to describe the various synthesis

methods:

1. Envelope and Envelope Generator. A constant value used in the amplitude of a waveform

yields a sound event with constant amplitude. In the real world, instruments and other sound

events often have time varying amplitude, and in general sound more interesting than non

amplitude-varying sounds. To support time varying parameter input, the concept of envelope

is introduced. An envelope generates a signal that is used to control other unit generator's

parameters, such as amplitude or pitch, over time. Envelopes can be specified in many ways.

In Figure 9 an envelope generator is shown that uses a waveform to control amplitude. In

practice, many commercial synthesizers support a different style of envelope called an ADSR,

which lets the user specify the time delay and amplitude of the attack, decay, sustain, and

release events (Figure 11). An ADSR allows a simple, efficient, yet course-grained method

of control of amplitude over time. Some current digital synthesizers allow tracing of arbitrary

curves, which allow greater precision in specifying the behavior of an instrument. Envelope

generators may be implemented to generate their output via a procedure (mathematically), or

from a specified waveform.

www.manaraa.com

21

Amplitude
Duration

Figure 9. An envelope unit generator.

Peak amplitude

f1
I oration

:v~~ -~
Amplitude;

I Frequency
t2 I

o~
' Signal Output

Figure 10. An envelope generator directly controlling the amplitude of another unit generator.

(!)
'"O
:::J

:t=
0..
E
<(

0 Time

Figure 11. Typical signal for an ADSR envelope generator.

2. Arithmetic Operator. In audio synthesis it is often necessary to combine or transform

signals with other signals. For this purpose an arithmetic unit generator is useful. Common

www.manaraa.com

22

operations include multiplication and addition (Figure 12), wqich are used to combine signals

together. Multiplication is useful when scaling the amplitude of a signal. For example, to

apply an envelope to an existing signal, attach the envelope generator to one terminal of a

multiply unit generator, and attach the signal to the other terminal (Figure 13). Addition

is useful when mixing two or more signals.

Signal lnput(s)

I

0
Signal Input(s)

I
I

Signa1'output Signal 'output
Figure 12. Multiplication and addition unit generators.

Peak ampl1tu·de
I Duration Frequency

11 I I I 12 :v ~-Q ~
\.\ ///

\..-----.! / x \ .! I

' ' \ ,' , __ T/

' Signal Output
Figure 13. Example of a multiplier used to control amplitude.

Fixed-Waveform Table-lookup Synthesis

Fixed-Waveform Table-lookup Synthesis, or wave-table synthesis, is an efficient way to produce

complex tones [Dodge97]. Wavetable synthesis takes advantage of the fact that some sounds contain

redundant information. At small scale, redundancy comes from the simple periodicity of frequency,

www.manaraa.com

23

at larger scales redundancy comes from sounds that contain loopable components - parts that when

repeated make it hard to hear a repetition.

Wavetable synthesis works by looping a portion of the sound that is repeatable - or with the

ability to be repeated so to not become tiring to the ear. A wavetable is analogous to textures from

the field of computer graphics. Often a texture will be used as an easy and effective way to add

complexity and detail to 3D surface geometry. Textures should be tileable, or able to be repeated,

without the ability to discern where the tiles start or stop. Like textures, wavetable sounds also need

to be tileable, except that the words loopable and repeatable apply better to the case of sound.

Representing complex features using presampled material is advantageous. The reason is that in

terms of computer processing power, reading samples from memory is much less expensive than

mathematically computing each sample.

The Digital Oscillator Unit Generator

A digital oscillator is a concept that describes the traversal over an array of data. The array can

be circular, meaning that the traversal can iterate through the data restarting at the beginning causing

a loop, or the array can be noncircular where the traversal can travel to the end once and simply stop.

A digital oscillator is a fundamental type in the unit generator language (Figure 14). This unit

generator is commonly used in synthesizers because of its efficiency and realism.

Table

Amplitude
Duration

J 1/\\/r osc

Output Signal
Figure 14. A digital oscillator.

www.manaraa.com

24

Example Uses of Wavetable Synthesis

Wavetable synthesis is very common in modem synthesizers because of its efficiency and

realism, making the price per performance very attractive. Practically any real instrument can be

synthesized using this technique. To create a loopable sound for use in a wavetable, the instrument is

sampled within the frequency range expected to be used. Next the sound is edited to be loopable,

which can be done by visually inspecting the waveform graph and alternately listening for artifacts.

Instruments that have a long period of sustain are especially good source material to use to obtain

a repeatable sound for use in a wavetable. Usually post processing is required to make the looping

wave indistinguishable from a real instrument. Alternately percussion instruments often do not repeat

at all. To create source material for these, the duration of the instrument's play time is stored in a

waveform. Post editing for repeatability is not necessary for these types of percussive instruments.

Very simple sounds can also be represented with a wavetable. A sine wave is one example that has

very short repeatable sections. All fundamental waves (sine, triangle, saw, square, etc.) by their

periodic nature can be represented by a wavetable that is equal in length to one period of the

wavefonn (Figure 15).

Figure 15. One period of a sine wave.

Implementing Wavetable Synthesis

To create the wave table entries, a signal can be loaded from file (see section titled "Common

Audio Formats Used in Digital Computers Today"), procedurally generated using other synthesis

www.manaraa.com

25

method described here, or sampled from the environment. Wave-table synthesis is implemented by

traversing the wavetable values one or many times. Non-looping percussive instruments are traversed

once, while other instruments with a long sustaining portion are usually traversed indefinately.

Traversal of the values can be one to one, but it is often useful to support a variable step size, which

allows the traversal speed, and ultimately the sound frequency, to be changed. Changing the

traversal rate causes values to be skipped or selected multiple times. A better way to think about this

traversal is that the digital oscillator is actually sampling the lookup table as if it were a continuous

signal. Obviously, it is not a continuous signal, so when a sample falls outside of a real measurement

some kind of approximation is given either by clamping to the nearest value or interpolating between

the two nearest. To avoid high frequency artifacts caused by rounding errors during sampling,

interpolation schemes can be used when the sample falls between two wave table values.

Interpolation, rather than simply rounding to one value or the other, smoothes out the result, resulting

in less artifacts and a waveform that is closer to the original in tonal quality. Several forms of

interpolation are available: linear, cubic, and spline are a few (Interp).

Additive Synthesis and Wavestacking

Additive synthesis [Mathews69J is a method for creating complex sounds through addition of

simple tones [Roads96 J • For the simple tones, known as partials, additive synthesis uses sine waves.

The addition of the partials yields one additive synthesis sound generator, known as a voice. A

variation on additive synthesis is called "wavestacking", which adds together complex waveforms

such as sampled sounds. Like additive synthesis, each sampled sound in wavestacking ·also has its

own envelope. An example use of this could be to make hybrid instruments such as piano/flute,

where the individual voices fade in and out according to their own amplitude envelope. An

instrument using additive synthesis can produce a very wide range of sounds. The tradeoff with this

www.manaraa.com

26

approach is that the number of input parameters needed to specify an additive synthesis algorithm

grows with the complexity of the algorithm, making it very difficult to handle.

Subtractive Synthesis

Subtractive synthesis is the method of selectively removing frequencies from a source signal to

shape the spectrum of a sound [Pierce92]. The dominant unit generator in subtractive synthesis is the

filter. The filter takes as input one audio signal, and outputs one audio signal. Controls are usually

provided so the user can affect which frequencies get removed. A common control is cutoff, which

specifies the point at which to eliminate all frequencies either above or below depending on the filter.

Typical filters are: the high-pass, which removes frequencies below the cutoff point; low-pass, which

removes frequencies above the cutoff point; and band-pass, which is a combination of low and high-

pass filters, which offers two cutoff points and results in only a range of frequencies being let

through. Figure 16 shows the unit generator symbol for a band-pass filter, which only allows a range

of frequencies through. This filter can also be configured to be a low or high-pass filter by setting the

center at 0 or at Nyquist and using the BandWidth input as the cutoff.

Center
Frequency

Input

I
FILTER

BandWidth

Figure 16. The unit generator symbol for a filter.

www.manaraa.com

27

Non-linear .or Modulation Synthesis

Modulation synthesis is a way to produce complex sounds with very simple groups of unit

generators [Chowning73]. It includes several techniques, such as ring modulation, amplitude

modulation, and frequency modulation. Specifically, modulation is the alteration of the amplitude,

phase, or frequency of an oscillator as controlled by another signal [Dodge97]. Modulation synthesis

is more efficient than subtractive and additive synthesis in terms of memory, processing time, and

number of parameters to specify. Only 2-6 unit generators are typically needed for this type of audio

synthesis, where several times this amount would be needed to achieve the same result in subtractive

or additive synthesis methods [Roads96]. The shortcoming of modulation synthesis is that it can be

very non intuitive to specify the parameters, since small changes in parameters yield widely different

complex sound. With this type of audio synthesis it is possible to produce tones that come very close

to natural instrument tones, as well as other more creative non-natural tones.

The configuration seen in Figure 13 is one example of how to connect unit generators for

amplitude modulation (AM), or more generally, ring modulation (RM). RM is where one signal

scales the other signal over some time varying frequency. The difference between AM and RM is

that in AM the waveform is always unipolar (the entire waveform is above zero). At slow rates RM

produces the popular tremolo effect, and at fast rates can produce more complex effects. Another

possible configuration for RM is in Figure 10. Frequency modulation can be configured similarly to

Figure 10 if the first oscillator was connected to the frequency terminal instead of the amplitude

terminal. AM is also used to apply an envelope to a signal, a technique that produces a more physical

quality for use in sounding musical notes. In Figure 17 we illustrate how an envelope can be used to

shape a signal. The operation shown is c = a * b, where signal b scales signal a to produce signal c.

In practice, each sample a[n] and b[n] are multiplied together to produce c[n], where n is a sample

index.

www.manaraa.com

28

·',.''I· I ·'1 · .1' 'i ,·,. ' :11:h,:d1di ilH1,,1'1l11l111i

1111
I ,1,ll!IJflij</lll

'
1 ~I I ' 1 l ! ~ (11 I ', 0 ' I I I I I II I I ~.

'-'. """'' ,_·_: __ ' _:_i_" _._I ,_'"_ii _·,":_r_. ·_' ~ ·: :1. ':' , ,· ,· 'l, 11 1
:: j: ',I ~ 1j I , j l i I I '
I 'p f

a.) * --b.) c.)
Figure 17. Amplitude modulation illustrated.

In summary, digital sound synthesis builds upon digital audio by specifying methods to

manipulate the audio. Next we will introduce sonification, which is a discipline that uses the

concepts we presented here in the Digital Audio Synthesis section. In sonification, audio synthesis is

the technique used to manipulate audio in response to data in many situations.

Sonification

Sonification is a non-speech aural way to represent information [Kramer97]. It is a way to

transform a given set of data into sound in order to better communicate or interpret the information.

There are other terms to describe this idea, but "sonification" is the most common. The terminology

is not standardized, but often the distinction is made between data-controlled sound (sonification),

and direct playback of data samples (audification) [Kramer94]. Another term is "auralization'', which

is sometimes used as the sound parallel to "visualization'', which is the standard term used to describe

the representation of data through images [Visualization].

Sonification is an interdisciplinary field requiring skills from many fields of study including

human perception, acoustics, design, the arts, and engineering. Sonification integrates the following

four areas:

• Psychological research in perception and cognition

• Design and application of sonification methods

• Development of sonification tools

www.manaraa.com

29

• End-user sonification applications

Motivation for Sonification

As computing power and storage capabilities increase, it is possible to study more complex

scientific problems that generate or require massive amounts of data. For example, the Human

Genome Project has generated huge amounts of data while mapping the human genome that are well

beyond terascale needs. There are 30,000 genes in human DNA, with a total of 3 billion chemical

base pairs [Genome]. There is a greater problem of how to analyze the data, or preprocess it to be

ready for use with any display medium, let alone sound. But once that is ready, it is anticipated that

the data will still be quite large, and in order to be analyzed by scientists, it will require several

representation channels besides visualization, where sonification will probably play a key role.

Examples of Sonification

Sonification has been used successfully in many applications. Here we will present an overview

of some of the greater successes. Simple uses of sonification include:

• The Geiger counter, invented by Hans Geiger in the 1900's, is a simple device to detect

invisible radiation levels through "click" sounds [Kramer94]. Each click corresponds to

a particle hitting the sensor allowing the user to perceive the level of radiation near them

without taking their eyes off their work. The counter provides a continuous reminder of

the current radiation level.

• Sonar is a method of detecting objects under water. Similar to radar, sonar sends pulses

of sound through the water that reflect back. The time that it takes to get the signal back

indicates the distance of objects, whereas the intensity of the sound tells the size.

www.manaraa.com

30

• Cockpit and dashboard displays often use sound to let the pilot focus on navigation.

For example warning tones emit when fuel is low so that the driver does not need to

remove their eyes from the navigation task.

• The Pulse-Oximeter is an instrument that emits a tone that varies in pitch with the level

of oxygen in the patient's blood [Kramer97]. This allows the surgeon to keep their eyes

focused on the patient. This sonification of the oxygen level uses a different channel of

information, freeing the surgeon to focus on what is important.

• In seismology recorded datasets can be huge and hard to understand [Kramer94]. Since

seismic data is naturally acoustic, it makes sense to listen to it. Because the periodic

frequency in seismic waves are much lower than the human audible range (20Hz -

20kHz), to hear them they need to be played back at a faster rate. A 24-hour dataset can

be compressed to 4 minutes, after which depending on the size of the seismic event,

something like a gunshot can be heard. When trained, a person can distinguish between

the various earthquake ratings.

When to Use Soniflcation Instead of Visualization

Some very general rules can apply when deciding what data in an application is sonified and what

data is not. Typically sonification should be used when the data presented is simple, short, time

based, or urgent. This is because the mind is able to interpret patterns of serialized sound events

easier than patterns of serialized visual events and because sound is always heard, independently of

the listener orientation with respect to the sound source [Deatherage72]. Conversely visualization is

useful when the data presented is complex, long, spatial, or non-urgent; it allows the user to view

everything in parallel, allowing the user to instantaneously change their focus to intake different

aspects of the data as needed.

www.manaraa.com

31

Requirements for Sonification Tools

Here we outline some requirements when designing a sonification tool. Included in these

requirements are certain necessary components and features that are important to have in a

sonification tool. Components include the following:

• Sound synthesis support for specification and control of the waveform.

• Control software to aid in manipulation of the produced sound. The controls should be

accessible and should logically map the sound space in a way that makes sense.

• Analysis tools to extract significant elements from the data.

• Editing tools for basic manipulation of waveform or sequences of sound events.

• Signal processing utilities.

In addition to the components, there are features that the software should also exhibit:

• Portability. Tools should be consistent, reliable, and portable across many computing

locations and platforms. This indicates that tools should use open standards as much as

possible, limiting their dependency on proprietary features.

• Flexibility. Tools should be extendable enough to support new ideas when they are

found. Controls should be appropriate to the data being sonified. Tools should be

flexible enough to support many audio synthesis techniques. A simple interface should

be provided to make the tool accessible to novices.

• Integrability. Sonification tools should work with existing visualization tools.

Methods of Sonification

There are many methods of sonification. The ones below are the most commonly used:

www.manaraa.com

32

• Auditory Icons are single sound events that represent what they sound like in the real world.

For example a grinding sound could happen when a user deletes a file from their computer, or

a scraping sound could happen while dragging the file to a new location. An auditory icon is

designed to be instantly familiar when heard, and correlates closely with the actual event that

happened [Auditory Icons].

• Earcons are tones, or sequences of tones that form the basis for building messages. In music,

a short series of tones is called a motive. Earcons are constructed from a series of these

motives. The advantage is that with many sound events, many parameters are available to

manipulate such as pitch, tempo, timbre, and loudness. The motives can be combined or

transformed to create more complex structures [Earcons].

• Direct Simulation is a method of mapping raw data directly to sound. Example uses of this

method are described above in the seismology example. Direct simulation works well in

cases where data values closely resemble audio phenomenon, and contain events that vary

over time. For example, in Computational Fluid Dynamics Data (CFD) data, samples of

pressure over time make a good candidate for playing directly to audio hardware. This

technique can be thought of as placing a virtual microphone into the stream of data to sample

the pressure at a given point [Auditory Display]. Other parameters like flow direction, and

velocity are difficult to represent with direct simulation, and require another method.

• Dynamic Music is a method in which music is used to represent data. Typically in dynamic

music, music events are generated in response to data. Response can be to the data as it

changes in real time, or as a preprocessed step. In dynamic music, it is desirable to force the

music into something that is qualitatively listenable to most people. Typically this means

incorporating elements that in music research have proven to provide listenability such as

providing a sense of completion and phrasing.

www.manaraa.com

33

As discussed in this chapter, the topic of sonification is important because it defines methods of

utilizing sound as a medium to represent information. In this thesis we address several application

domains and the ones that rely the most on sonification are virtual environments such as scientific or

entertainment.

The following chapter describes the requirements for audio synthesis applications, including

sonification, which lead into the design of Subsynth.

www.manaraa.com

34

CHAPTER 3 REQUIREMENTS OF AN AUDIO SUBSYSTEM FOR
INTERACTIVE APPLICATIONS

This document focuses on two genres of interactive audio applications: virtual environments, and

music. Within each of these two genres, there are several areas that make use of audio with

interactive capabilities: scientific sonification, interactive composition and performance, and virtual

environment sonification. These areas will drive the requirements and design satisfied by Subsynth,

and we will discuss each in turn in the following sections. Based on those areas, we will define the

requirements of an audio subsystem for interactive applications.

Scientific Sonification

In the previous chapter, we discussed the reasons why scientific applications may need to sonify

their data or present sound changes to the user to help understand the data. In the past, sonification

has been done offline, but recent advances have allowed scientific sonification to be done in real-time

[Bryden02]. This follows similar trends in scientific visualization. Scientific sonification may be

done in response to real-time data or by allowing the user to probe areas of the data interactively.

Interactive Composition and Performance

Music authoring tools on computers allow the musician to input parameters in real time. This

means that the user gets instant feedback about how the finished work will sound, thereby putting the

human into the production loop. This is important because music is often a direct expression of its

composer. Like any real musical instrument, a computer should respond in real time to provide this

ability for expression.

Music composition and playback applications demand a high degree of flexibility, as do tone

generators for performance and studio work. Not only do these applications need to have a high

degree of polyphony (number of sounds able to play at a given time), they also need low latency

www.manaraa.com

35

resulting in highly interactive timbres. Complex polyphony is important so that the user does not run

out of simultaneously usable sounds too quickly. Low latency is important so that any user

interaction performed feels natural and does not hinder artistic expression and creativity. Interactive

timbres allow the composer to manipulate the tonal quality of the sound adding to expressiveness of

an instrument.

Configurability is important so that the artist or sound engineer can change the system to fit their

needs either statically as a setup phase or dynamically during performance or playback. An example

of dynamic modification could be a filter sweep to change instrument timbre over time in a piece of

music. An example of a static setup could be to choose an audio synthesis method, or to select the

specific parameters for that method.

Virtual Environment Sonification

A virtual environment (VE) is one that gives the user a feeling of presence, the feeling of being

there, by immersing them in some computer generated world. VEs are usually explorable and

interactive geometric spaces. They are presented using realtime three-dimensional graphics and

sound and can include force feedback, special input devices, and displays. Most modern games such

as Quake [Id], Ico [SCEI], and Grand Theft Auto [Rockstar] provide examples of VEs. Fully

immersive VEs are seen most often in scientific visualization centers and virtual reality research labs

such as the Virtual Reality Applications Center (VRAC), Argonne National Labs (ANL), and

National Center for Supercomputing Applications (NCSA). Examples of these immersive VEs are

Cueva De Fuego, and the Nexus [VRAC].

In typical VEs, uses of audio involve several wave table sound sources linked to various events.

For example, VEs may have audio file players for ambient music loop playback (wave or mp3 format

for example), error tones, and other simple one-shot sound triggering. These uses are often less

www.manaraa.com

36

intensive and have lower requirements than the highly dynamic use of sound in "Scientific

Sonification" listed above. Collaborative VEs may also make use of streaming audio for distributed

communication. For enhanced immersion, VEs may use filters on triggered sounds such as Doppler,

reverb, and Head Related Transfer Function (HRTF) [HRTF] as a secondary means to present motion,

room size, room material, and 3D position.

Requirements

Considering the application domains we have outlined, we now outline our requirements for an

audio synthesis toolkit.

• Configurable. To support uses beyond an audio synthesis tool's original design, the system

must be very configurable. For this, the system design should be partitioned into reusable,

pluggable pieces where applications use only as many pieces as they need to get the desired

results. In addition, the toolkit should reconfigurable while the application is running rather

than limited to only one setup step at the beginning.

• Useful Synthesis Methods. The toolkit must provide a series of audio synthesis methods

that make the toolkit instantly useable without the need for much user extension. At a

minimum, we feel that it should offer wavetable and subtractive synthesis methods, both of

which give a wide range of control to applications. Specifically, this means features such as

one-shot sounds, looping sounds, and environmental effects such as reverb, delay, and filter.

• Extensible. To support future needs, the audio toolkit must be scalable and adaptable to new

software extensions such as user defined audio synthesis techniques and must scale, adapt,

and take advantage of underlying hardware such as CPUs or DSPs when available. Because

future components may be added later, a common generic interface should be supported so

that applications can take advantage of the new features.

www.manaraa.com

37

• Real-time Interactivity. A primary feature needed by these groups is the ability to

manipulate the sound's control parameters based on the user interaction. The sound system

therefore must be flexible enough to offer many control parameters and be able to respond in

a timely manner to the user's unpredictable actions. The real-time nature of the toolkit should

be designed to operate as a soft real-time tool. VR and entertainment systems are often

considered soft real-time [ManimaranOl] [RealtimeVR]. This means that in order to deliver

a highly interactive and immersive experience to the user, these systems must be highly

interactive and engaging to deliver an immersive experience. As such they must have a high

frame rate, good audio fidelity, and low-latency response to user input so to not make the user

sick or confused [Pausch92] [RealtimeVR]. VR and entertainment systems are not (usually)

considered firm or hard real time because occasional slowdowns or anomalies in these

applications do not have a severely detrimental effect on users. For example, it is generally

understood by these users that if they use their system to perform some other task, then the

soft real-time task will probably be affected. The metric that these soft-real-time systems go

by is does the system present a convincing enough reality under normal

conditions?

www.manaraa.com

38

• Portable. With potential for code development across several machine and operating system

types the audio synthesis toolkit must be portable. Our applications range from tone

generation for music and 30 games running on common PCs to scientific simulations running

on powerful multiprocessor or clustered systems. We focus our solution to consumer level

and professional workstation systems. This includes operating systems such as Windows,

Mac OS X, IRIX, and LiNUX. Developing portable software for these platforms is easy if

care is taken to write the software in terms of cross platform subsystems and programming

language features. For our research group at the Virtual Reality Applications Center

(VRAC), being able to support these platforms allows us to keep our VR software scalable

between PC and high-end SGI systems, while looking to migrate to lower cost LiNUX

clusters.

• Consistency. The sounds that the toolkit makes should sound the same wherever it is used to

facilitate application consistency across computing locations.

• Interface Accessibility. The toolkit should have a clean application-programming interface

(API) and be accessible from an application of the type listed above. This interface should be

consistent with the real-time requirements, and cannot introduce latency or excessive

computational overhead.

• Runtime Location Agnostic. The synthesis tool should be able to run within the same

computer as the end-user application, or on a separate machine when extra performance is

needed. This decision should be left to the application writer, so the tool should make no

restrictions with regard to where or how it is run.

An additional requirement that we impose is the free distribution of the audio synthesis tool. This

requirement is certainly optional, but is one that we chose to follow during the work of this thesis.

We want audio developers and users around the world to be able to combine efforts to maintain and

www.manaraa.com

39

advance it. To keep the integrity of the tool, it should go under an OSI approved license [OSI].

These licenses have undergone close scrutiny by the public, and in general allow standardized use,

peer review, bug fixes, and feature submissions. With the requirements defined, we move on to

investigate several tools already in use and discuss how they address these requirements.

www.manaraa.com

40

CHAPTER 4 CURRENT TOOLS FOR INTERACTIVE AUDIO

Here we review existing audio tools that can be used for interactive real-time audio as described

in the previous section. We have chosen to review a selection of those tools that are the most general,

scalable and portable; they are also the existing tools that most closely meet the requirements

presented in the previous chapter.

Musical Instrument Digital Interface (MIDI)

Musical Instrument Digital Interface (MIDI) defines a standard serial interface for controlling

musical devices [Roads96]. MIDI does not transmit sound but instead transmits messages which can

be used to control sound devices or devices completely unrelated to sound such as stage equipment.

MIDI was designed in 1983.

MIDI is an asynchronous serial interface with a transmission rate of 31.25 kilobits per second

(kbps). Each byte sent is 10 bits long, starting with a start bit, 8 data bits, and a stop bit. The MIDI

transmission protocol is made up of messages. Each message is contained in an 8-bit string, although

some message data can span these to become many bytes long. Typical messages that MIDI defines

are note off, note on, aftertouch (key pressure), control change, patch change, pitch wheel, and system

exclusive. System exclusive (sysex) is the message that makes MIDI somewhat extendable. Sysex

defines a way for vendors to implement specific non-portable control methods for their devices. The

problem is that this message type is not standard, and thus it has the potential to make applications

control of tone generation inconsistent between MIDI devices.

Each MIDI message can be directed to a "channel". In MIDI, there are sixteen channels, and

these are used as a sort of cache to store instrument state. Because setup of each instrument may take

the device longer than the next note trigger, these channels are typically setup before any notes are

sent. Each MIDI message then executes within the scope of that channel. There are some global

www.manaraa.com

41

messages that execute outside the scope of any channel, but these do not make use of the channel

(instrument) state [MIDISpec].

MIDI is an established standard that allows music control to be decoupled from the tone

generator. There are a diverse range of tone generator devices available that support the MIDI

protocols. Unfortunately, MIDI does not specify exactly what the tones sound like, which means that

the resulting sounds produced by tone generators can vary dramatically. MIDI provides no method to

configure specific audio synthesis algorithms; rather it depends on tone generators to define what

algorithms are used. This hard-coded nature of current MIDI tone generators is a limitation. It means

that the controlling application has only high-level control over the resulting sound. Any specific

control over the sound through non-portable means such as MIDI sysex can be lost after migrating to

another tone generator.

MIDI has some issues with addressing. Tone generators are only required to support sixteen

addressable channels. The maximum number of addressable devices is fixed. Latency can be a

limitation when accessing several tone generators at one time because devices are connected through

daisy chaining, which means there will be some latency introduced as the MIDI message is

retransmitted from device to device. These addressing and latency limitations can be overcome

through use of a MIDI hub. A hub can fix the latency problems associated with daisy chaining

because it can send the messages simultaneously from one hub rather than needing to retransmit over

several hops in the daisy chain. A hub can also increase the number of devices available through

multiplexing.

In summary, MIDI is good for most applications, but it fails our requirements criteria. The

reason is that applications written for MIDI can either be complex or portable but not both. If they

are portable, they cannot take advantage of every feature of the synthesizer because it would need to

use sysex messages, which are device-dependent with contents not part of the MIDI standard and thus

www.manaraa.com

42

are not guaranteed to be implemented by any two MIDI devices. Consider the case of sonification of

many-dimensional data. If this application needs access to more parameters than standard MIDI has,

then sysex will be needed to gain control of more synthesizer features. For these complex

applications using MIDI portability and complexity is a tradeoff that we hope to avoid with our

design of Subsynth.

CSound

CSound is a very flexible tool from MIT that allows user interaction through scripting and some

input devices such as MIDI [CSound]. The tool supports both an offline renderer as well as a real-

time renderer. CSound started in the 1960' s with the Music 4 program written at Bell Telephone

Laboratories by Max Mathews. This work coined the wave table concept and much of the

terminology still in use by music researchers today [CsoundRef]. Followed by Music 4, was Music

4B, Music 360, and Music 11. With Music 11, control and signal processing was separated into

distinct networks, the design of which still survives in the modem CSound.

CSound is written entirely in the C programming language [Kemighan88] and runs on any UNIX

or Win32 machine. CSound defines a scripting language. This language can be used to control and

specify music synthesis algorithms and actions. The two scripting languages available in CSound are

for instrument definition and for score definition. The instrument scripts, having an . osc extension,

allow a user to arbitrarily create instruments using mathematical notation (see Listing 8 in Appendix

A). The score scripting language, having a .sco extension, allows control of the instruments with a

series of time-based events.

CSound includes basic additive, subtractive, and non-linear synthesis methods. It also includes

more recent additions such as phase vocoder, spectral data types, and granular synthesis. A MIDI

converter is included allowing CSound to be run from MIDI files and external keyboards. Of interest

www.manaraa.com

43

is the real-time support in CSound with run-time event generation (via the score scripts and MIDI

files) allowing run-time sensing and response setups for interactive composition and performance.

CSound is currently only available as a script interpreter having no accessible application

programming interface (API) useful to most virtual environment applications being developed today.

The software is written in C, but the API is not exposed or supported for use by C programmers.

Lastly, CSound has a non-OSI license that only allows educational use. Any derivative works or

tools that use CSound would have to have the same license. This limits CSound from widespread use

particularly in the commercial sector.

Supercollider

Supercollider is an environment for real-time audio synthesis [SuperCollider]. It is a software-

based audio synthesis toolkit that only depends upon the computer system's main processor and the

PCM audio port on the sound card. SuperCollider provides a new programming language that derives

its structure and syntax from both Smalltalk and C. The programming language features garbage

collection, functions, and a small system for object oriented classes. Other utilities provided in

SuperCollider are a GUI builder for creating patch control panels, a graphical wavetable and

breakpoint editor, MIDI control, and a very large collection of signal processing and audio synthesis

functions.

SuperCollider provides several classes of unit generator available as objects in the scripting

language:

www.manaraa.com

44

• Unary Operators: for every mathematical function (such as sine, cosine, floor, absolute

value, negate, square root, etc.)

• Binary Operators: such as+,-,*,/, min, max. round, etc.

• Oscillators: such oscillators as wavetable, sine, impulse, saw, pulse, formant, etc.

• Noise: such as white, pink, brown, clipped, etc.

• Filters: such as resonator, one pole, two pole, low pass, high pass, band pass, band reject,

butterworth, integrator.

• Controllers: such as envelope gen, trigger, trigger delay, gate, sequencer, etc.

• Amplitude Operators: such as compander, normalizer, limiter, stereo and quad pan

• Delays: such as 1, 2, and N sample delay line with or without interpolation, comb filter, all

pass, multi tap, time domain pitch shift, ping pong.

• Frequency Domain: such as FFT, inverse FFf.

• 1/0 Adaptors: read and write adapters on top of signal buffers, disk, and hardware audio

ports.

From the list above, we can see that the objects available by SuperCollider are varied in purpose.

With this array of methods available, SuperCollider is well suited to anyone using additive,

subtractive, AM, FM, or granular techniques.

SuperCollider' s strengths are its high level language (See Listing 9 in Appendix A for an

example), which makes it very useful for quick prototyping and ease of use by people not used to

lower level programming languages such as C or C++. Also the huge number of signal processing

units included makes it very flexible for creation of many audio synthesis methods. SuperCollider

included tools for graphical user interface creation, which makes it easy for users to interact with the

algorithms they create. SuperCollider only runs on a Power Macintosh OS 9, with no plans to port to

Windows, or any UNIX workstation. There is no provision to allow extension or addition of unit

generators. SuperCollider only allows programming in their scripting language and provides no

bindings for C or C++ libraries or applications. This makes it very difficult to integrate into the types

of applications listed in the requirements section. At the beginning of this thesis work, SuperCollider

www.manaraa.com

45

was a commercial product. Now it is free, but the source code is not available yet, and the license has

not yet been announced. At this point, there has been no mention of an OSI-approved license.

Virtual Audio Server (VAS)

The Virtual Audio Server (VAS) is a toolkit created at the Naval Research Laboratories (NRL).

VAS was designed to facilitate exploration of the problems associated with designing virtual sonic

environments (VSE) [FouadOO]. The focus in this toolkit is on the administrative side of setting up

system hardware such as speaker arrays and driving them with the appropriate audio signals from

software. As such, VAS includes pluggable "localizers".

VAS defines a localizer as some transform than takes an audio signal as input, processes it, and

outputs the resulting signal to the speaker array. Ideally the transform is such that the audio output

sounds to the human ear as if each audio source it emits from a point in 3D space. VAS includes 3

localizers by default:

1. Panning, which is simple and inaccurate. The panning technique calculates the sound level

at each speaker in the array and attenuates the sound source's audio signal by that amount for

each speaker.

2. VBAP, or Vector Base Auditory Panning, is more accurate and works in three dimensions.

VBAP is a three-dimensional spatialization technique that uses speaker panning. The

technique chooses three speakers out of an arbitrary number of speakers and pans an audio

source between them. This technique results in spatialization of an audio source in three

dimensions provided that the speaker array is three-dimensional. Because this technique

simulates the sound field and offers no audio synthesis capabilities, effects such as

propagation of sound through air cannot be recreated. VBAP works best with a large number

in the speaker array [VBAP].

www.manaraa.com

46

3. HRTF, or Head Related Transform, is the most accurate but also most expensive. HRTF

uses a technique called Perceptual Synthesis to render sound that closely models what a

user's ears would hear [HRTF].

Each localizer is selectable by the user; also the user is able to supply their own localizer if they

wish to experiment.

VAS was implemented in C++ and runs on the IRIX operating system by SGI. VAS provides

two libraries, one for local execution, and one for execution using a sound server. VAS has many

good features, in particular for VSEs. It allows researchers to try different algorithms and

loudspeaker configurations with no change to the VAS framework. VAS is scalable from headphones

to small speaker arrays to arbitrarily large speaker arrays. With this built in functionality, VAS is

very flexible. VAS is limited by IRIX's AL library, which only supports up to 16 sounds. VAS is

primarily a research tool, which could imply that it is not ready for production use. Also at the time

of this writing no version was available for download, and the license is unknown.

Virtual Sound Server (VSS)

The Virtual Sound Server (VSS) is a proprietary audio toolkit developed at the National Center

for Supercomputing Applications (NCSA). According to [VSS], "VSS is a platform-independent

software package for data-driven sound production controlled from interactive applications." The

work in VSS was derived from a tool called HTM, which is a framework for real-time sound

synthesis controlled via network. As a result, VSS is also controlled by network connection. VSS

offers control of software synthesis, simple sample playback, and provides abstraction to other

synthesizers such as MIDI, Max, and Open Sound Control (OSC). VSS claims to be platform

independent but currently only offers SGI IRIX and Linux versions.

www.manaraa.com

47

To use VSS, a server process must already be running. A client application connects to it over

the network, after which the client can direct the server to perform sound related tasks. For each

sound the client allocates, the server gives back a handle to the sound, which the client uses to

manipulate that sound. This practice of referring to sounds by handle is common in most sound

systems whether they are accessed over a network or not. VSS offers a higher-level construct on top

of each sound or group of sounds called "actor". An actor is also manipulated using a handle, and the

actor is used to specify particular audio synthesis methods. In effect, actors are used to group and

position sounds. Like sounds, actors can accept messages that define control parameters. The VSS

client or other elements such as actors can receive these messages. A data flow is defined so that

actors can send messages to other actors without client intervention. The client ahead of time can

define these actions. Actors process real-time input and output in the form of audio or MIDI. All

network connections in VSS are masked by higher-level client-side function calls.

VSS defines a data format to facilitate data driven applications called the AUD format. This

allows separation of sound logic from the main application code. Benefits of this are modularity and

the ability to change the sound logic without recompiling the application. The AUD format maps

application events to sound procedures.

In conclusion, the VSS is a high level toolkit aimed at virtual environment application

programming. VSS offers a range of audio synthesis methods under a fairly high level interface

controlled by event messages. It is limited by the number of platforms it supports, currently running

on only two types of UNIX operating system. For true portability, application designers will need to

modify VSS or look elsewhere. Another limitation is that VSS only offers client/server control via

network. This limits VSS to high-end applications needing multiple computers, or one computer with

two processes communicating via the operating system's TCP/IP stack. This is less efficient than

direct access of the sound in the same application process space. The VSS programming interface is

www.manaraa.com

48

general enough that the VSS client implementation could theoretically be extended to include the

server communicating and running in the application's process space. However this option was not

provided at the time of this writing. VSS does not offer an interface for defining arbitrary audio

synthesis algorithms, so it is not extensible by developers. Some applications may need a finer

grained toolkit offering more direct control with lower level access. The high level aspect, while a

benefit to some, could also be viewed as a limitation that restricts applications into limited methods of

sound manipulation. VSS is specialized for event based message triggering of pre-programmed audio

synthesis methods. Applications needing to redefine synthesis methods or do things outside of the

scope of VSS may have difficulty. Even though VSS has limitations, it is still very useful for typical

high-end virtual environments and sonification applications developed for the Linux and !RIX

operating systems. Lastly, the largest limitation with VSS is the license, which currently is restricted

to single user non-commercial use, cannot be redistributed, and derivative works cannot be publicly

shown.

Digital Instrument for Additive Sound Synthesis (DIASS)

The Digital Instrument for Additive Sound Synthesis (DIASS) is a tool created jointly by

Argonne National Laboratory (ANL) and University of Illinois at Urbana/Champaign (UIUC)

[Kaper98]. DIASS is an audio synthesis tool used to sonify scientific data on Argonne's high

performance supercomputer at the Center for Computational Science and Technology (CCST). It

operates with additive synthesis, a technique that can create arbitrarily complex sounds, and it can be

parallelized across multiple processors.

Using additive synthesis, DIASS is able to offer a very flexible means of sonification. As we

mentioned before, additive synthesis can overwhelm the user with the number of data inputs needed.

www.manaraa.com

49

This also means that additive synthesis can sonify very complex processes containing many degrees

of data.

DIASS consists of two parts: an editor and an instrument. The editor provides a GUI for preview

and authoring of individual sounds and a script reader, which takes data input from a script. The

instrument responds to messages from the editor. The instrument is capable of playing an arbitrary

number of sounds where each sound can be made of an arbitrary number of partials. Each partial can

be controlled up to twenty-five ways. Some of the controls are static such as start time, duration, and

phase. Other parameters are reverb and echo. Some of the controls are dynamic and include

envelope, panning, amplitude modulation (tremolo), and frequency modulation (vibrato).

Because additive synthesis can present the user with a huge number of inputs to control, DIASS

offers macros to perform global operations over collections of sine waves. For example, adjusting the

loudness of a sound should affect all partials. Also because DIASS primarily uses additive synthesis

with many voices, it is computationally intensive and requires a large amount of memory. The idea

behind the design of DIASS is to use as much computing power as is available. The instrument

comes in sequential and parallel versions. The parallel version uses MPI, a message-passing library.

MPI facilitates parallel computing across many nodes, which are computing units such as computers

or running processes [MPI]. Parallelism is implemented at the sound level, not at the sound partial

level. A bottleneck exists with this approach in that after every sound is computed, each node must

deliver the result to a single "mixer", a computer that combines each sound together for final output

for listening. DIASS does not currently run in real-time, but this is a feature that will be added in the

next release.

Strengths of DIASS include a massively parallel sound renderer utilizing additive synthesis,

which is an audio synthesis method known for its ability to handle many data inputs simultaneously.

DIASS is implemented in C, and this could be a potential limitation since audio synthesis algorithms

www.manaraa.com

50

are object oriented by nature. A language like C++ could provide built in language features that

would better represent the design of DIASS. The next version of DIASS promises to be implemented

in C++. The main limitation of DIASS is that it does not currently run in real-time. The parallel

version of DIASS would not be suitable for most users--especially individuals-because of the size

and/or number of machines required to run it. DIASS only supports additive synthesis methods, plus

a few extra techniques such as wave modulation to manipulate the additive synthesis generated

sounds. Wavetable and other forms of audio synthesis are not advertised features. Additive synthesis

is very costly in terms of processor usage compared to other synthesis techniques such as wavetable

and modulation synthesis. The reason is that additive synthesis methods require as many

simultaneous voices as the degree of complexity of the waveform. In short, additive synthesis does

not scale well on a given system when complex sounds are needed. Most VE and music applications

need complex sound. Lastly, DIASS is not available for use outside its authors and their affiliates. In

conclusion, DIASS is a very flexible tool for additive synthesis, however it does not offer other forms

of audio synthesis making the tool not useful in certain application domains.

OpenAL

OpenAL, the Open Audio Library, is an effort to create a vendor-neutral, cross-platform API for

interactive three-dimensional (3D) spatialized audio [OpenAL]. Two-dimensional concepts, such as

panning, are considered "legacy" and are not supported. OpenAL's primary application audience is

3D entertainment VEs (such as games) and other popular multimedia applications. OpenAL is

currently supported by Creative Labs [Creative], but originally began with Loki Entertainment, a

Linux-based game company.

OpenAL aims to be the OpenGL of audio. OpenGL is a standard real-time graphics API that

abstracts every detail of computer graphics functionality needed by 3D applications. OpenGL

www.manaraa.com

51

provides a vendor-independent open standard that anyone may implement. With its well-designed

API and open nature, OpenGL is an industry standard and is used in thousands of applications

ranging from commercial to research. Similarly, OpenAL attempts to emulate OpenGL by creating

an open standard audio API that anyone may implement. There is a UNIX version (Linux and IRIX)

created by Loki Entertainment, and a Win32 and Mac OS X version created by Creative Labs. The

version by Creative Labs includes support for their EAX environmental audio function

[CreativeDev].

A typical application will begin to use OpenAL by opening an OpenAL sound device. Then a

context is allocated and associated with the device. With the context allocated, the programmer can

create sound buffers and sound sources. The sound sources are the "sound objects", and the buffers

are the source data to the objects. The sound objects in OpenAL support point and directional 3D

rendering that have the ability to play once, or loop continuously. Object state can also be

manipulated to affect sound object parameters such as distance attenuation, orientation, volume,

pitch, and filter.

OpenAL provides an object-oriented C programming interface for spatialized sound objects. The

interface allows a programmer to specify sound object positions and a listener in three dimensions.

Underneath the API, OpenAL is a multichannel processing system for the synthesis of a digital audio

stream. It offers a fixed pipeline of digital signal processing algorithms to send wavetable data

through. The digital oscillator in OpenAL generates an audio signal from wavetable data and has a

few options that the user can set. For example, the user can set the speed of the wavetable traversal to

affect the pitch of the sound source. The user can also confine the traversal of the wavetable to once

or infinite, for a "one-shot" or a looping effect, suitable for sound effects or ambient music and

sounds respectively. After the wavetable sound is generated, it travels through a series of processors

www.manaraa.com

52

for 30 spatialization including environmental effects, reverb and echo, Doppler, and distance

attenuation.

A strength of OpenAL is its multi-platform support. It covers almost every major platform

including, Windows, Macintosh, Linux, and !RIX. Another strength is its open sourced, usable

sample implementations. OpenAL's license has been designed so that anyone may implement a

version of it. As an added benefit, Loki and Creative labs offer free LGPL [OSI] (OSI compliant

license) sample implementations. OpenAL is very useful to simple virtual environments (VE) such as

most VE entertainment applications. It provides wavetable synthesis with a small set of processing

algorithms useful to 30 spatial audio rendering. Limitations. of OpenAL are that it only supports

wavetable synthesis and does not support traditional audio rendering; its philosophy is hard-coded to

30 spatialized wavetable audio. Considering OpenGL, OpenAL does not compare as a generic audio

tool. It is specialized to the, albeit very common, use in simple spatialized sound object triggering.

OpenAL cannot be extended to support more advanced synthesis methods, nor can it support

restructuring of the audio pipeline. In conclusion, OpenAL has its place as a very useful tool, yet is

restricted to a subset of application domains listed in the requirements section of this paper. For

sonification, OpenAL is limited by its support of only wavetable synthesis. For interactive

composition and performance, OpenAL does not offer enough features in their processing pipeline to

handle the range of dynamic effects desired in music.

PortAudio/P ABLIO

PortAudio [PortAudio] is a very simple developer tool for streaming digital signals to the audio

port of the computer. It offers a cross platform C API for audio streaming. The features of PortAudio

are that it is fast, has a very small code footprint, and runs on every major computing platform.

Under Windows, it supports ASIO (very low latency) [ASIO], DirectSound (low latency), and

www.manaraa.com

53

Windows Multimedia Extensions (high latency). Under Unix it supports the OSS API that is also

implemented by several system audio drivers including ALSA. Also supported are Apple's Mac OS

X Core Audio and Sound Mgr for OS7-9, SGI's IRIX AL library, and BeOS.

data

poll
queue
1.. n
slots

data

request

Figure 18. PortAudio Producer-Consumer diagram.

PortAudio operates with a callback architecture. With this method, the user registers a function

with PortAudio, and whenever PortAudio needs more data, it calls the function to get the data. Data

requests happen asynchronously to the execution of the application code, in a producer-consumer

fashion (Figure 18). In producer-consumer, PortAudio is the consumer, and the application is the

producer. PortAudio asks the application for more data asynchronously as needed. The application

must either synchronize with this asynchronous callback process, or it needs to be written such that

all audio code exists in the callback function. PortAudio also provides a blocked polling interface,

called PABLIO (for Port Audio BLocking 10), which the user calls repeatedly similar to the network

sockets send () function. Currently this only works in blocking mode, making it unsuitable for use

in a single-threaded graphics application. The time waiting on the blocking call could seriously

impact the draw and calculation update rates needed for the application. One solution could be to

reduce the audio block size sent per frame. This is not a good solution since it could induce dropouts

(data starvation at the audio hardware) if lowered too far or if the system needed to do some

unexpected work such as during resource loading. In short, the first callback style interface is usually

the best and is PortAudio's default interface. There is a third option that extends the idea of the

PABLIO method and that is to make an interface to PortAudio that is non-blocking. A non-blocking

www.manaraa.com

54

interface to PortAudio has been developed by the author and will be presented in the Subsynth

section of this paper.

PortAudio can be especially useful for real-time software audio synthesis applications. Because

of its low latency and overhead, it is a good low-level, cross-platform interface to audio hardware.

PortAudio was developed by people on the music-dsp mailing list, a group dedicated to music digital

signal processing. This tool is currently in use by many software synthesizers used in music

composition tools such as Twelvetone Systems' Cakewalk [Cake], and Steinberg's Cubase [ASIO].

The software synthesizers are typically implemented as VST (Steinberg) or DirectX (Microsoft)

plugins developed by third-party developers. Plugins are components that offer a common interface

useful among a variety of software that support them. Also several independent open source

composition tools and sound utilities use PortAudio.

Strengths of PortAudio include cross platform support and low latency support on certain

platforms. PortAudio would make a very good audio port hardware abstraction for higher-level audio

toolkits. However, PortAudio has some limitations. The callback interface might be awkward for

certain uses, but fortunately PABLIO is included for polling style IO. Since PABLIO only supports

blocking reads and writes, an application needing to do many other things may suffer in performance.

The final limitation in PortAudio is that it only handles raw PCM audio streams. No higher-level

audio rendering primitives are available. PortAudio will not work as-is for audio synthesis, but it will

work well as a port abstraction for audio synthesis tools such as Subsynth.

Several tools have been investigated for their use in sonification of VEs, scientific data, and

musical applications. PortAudio does not solve the job, but it looks like a good tool to use to abstract

the audio for cross platform support. The other tools, while they have their strengths, are all

specialized to their own goals and have one or more features that cause them to be unsuitable for our

needs as defined in the requirements section (see chapter titled "REQUIREMENTS OF AN AUDIO

www.manaraa.com

55

SUBSYSTEM FOR INTERACTIVE APPLICATIONS"). The next section introduces Subsynth, a

new tool that attempts to address these issues.

www.manaraa.com

56

CHAPTER5SUBSYNTH
Subsynth is a subsystem for sound synthesis designed for use by many types of higher-level

applications such as virtual environments, interactive music composition and performance, and

scientific sonification. It balances generality, performance, scalability, and portability with the goal

to provide consistency across computing locations, general use across many application domains, and

application survivability with the ability to adapt transparently to new hardware. The design of

Subsynth is inspired by the unit generator concept (Figure 19) described earlier in the section "Unit

Generator Language". We believe that a synthesizer designed with the unit generator concept will

make an interesting research tool as well as provide a useful generic layer upon which higher-level

audio applications and libraries could be built. We have chosen to build Subsynth in software in

order to decouple the hardware from the toolkit. This provides the ability to move transparently to

new hardware and operating systems. Here we will present the design and implementation of

Subsynth, which currently offers the core audio synthesis framework definition as well as concrete

extensions able to be used for audio synthesis today.

::>

.-----'1~1
Unit Generator

' ' ' v

Parameter Input(s)

Figure 19. A Subsynth module.

www.manaraa.com

57

Conceptual Design Approach

Creating software architectures that support flexible configuration can be difficult. Inventing

something completely new is not practical nor will it always produce the best design. We can look at

the unit generator concept described earlier (Figure 19) for inspiration. Modeled after unit generators,

each Subsynth module has n input terminals, and p output terminals. Terminals pass data in a

common format for compatibility between modules. Successful execution of the unit generator

concept can be seen in existing hardware modular analog audio synthesizers such as the one shown in

Figure 20 and in existing user-level music composition tools such as [Fruityloops] and

[Propellerheads].

Figure 20. Front panel of a hardware modular analog synthesizer.

The original hardware modular analog synthesizers were designed in small reusable units (Figure

21) hooked together with patch cables (Figure 20). In these figures, the patch cables connect the

input and output terminals, while each module has static parameters that can be adjusted manually

with knobs. The signals traveling between these modules are in a standardized format so that

www.manaraa.com

58

interfacing can be done generically without regard to the type of signal. This powerful design even

allows audio outputs to be used as control inputs. This means that a signal can be modulated by any

other signal.

(~- .

fl;~ -. " .. . ' ' ·-- '':"'.·· __ _...... . ---:-
1)

,r

Figure 21. Modular analog synthesizer unit generators.

To support the interoperability between the various unit generators, input and output terminals of

each unit are standardized. This unit generator architecture is very flexible and open, designed for

arbitrary user configurations, generic interoperability, and creative freedom for extension and design

of new audio synthesis methods. Building on this powerful concept, we chose to design Subsynth in

a similar vein.

The Subsynth system design consists of three components: core audio framework implementing

the unit generator concept, configuration allowing methods to specify audio synthesis networks, and

task management used for execution of the configured audio synthesis networks. In the next

sections, we explore the design and implementation of these three components.

www.manaraa.com

59

Core Audio Framework

This part of the design seeks to solve most of the functional goals set out in the requirements

section. It covers unit connectivity and data transport and is what provides the generic configurability

we desire.

The audio framework in Subsynth is based on the unit generator concept. It allows arbitrary

audio synthesis algorithms to be built, allowing Subsynth to serve as a very customizable audio tool.

The unit generators in Subsynth are called modules. Just like theoretical unit generators, Subsynth

modules take continuous and static input and give continuous output. Continuous input can be

thought of as the audio or control signals, while static input can be thought of as parameter setup.

Some modules are for generation of signals. Others are for transformation of a signal through

methods as simple as inversion or summation and as complex as filtration or convolution.

Each module can have any number of input and output terminals, or connecting points, as well as

any number of static parameter settings (Figure 19). Terminals may be connected together using a

Connection (Figure 22), which acts as a sort of glue to connect two terminals. Terminals are

simply connecting points, while the Connection is the actual medium where data travels. The

connection of terminals allows arbitrary setup of a sound network, a graph resulting from all

connected modules. After connection, data is propagated to and from the terminals using a storage

queue located in the Connection object that may be filled or emptied by either Terminal. This

signal transport medium serves both audio and control data purposes. Module parameters are

then accessed and set through a generic interface so that users of Subsynth do not need

to rely heavily upon interfaces that are proprietary to each separate module.

www.manaraa.com

syn::Connection

+Connection
+queue:const SampleButrerQueue,...
+queue:SampleButrerQueue &
+size:unsigned int
+getOther.TerminalPtr

0 syn::Module

+Module
_1) .. * +-Module -+upclate:voicl

+open:boo/
+close:voicl
+setlnstanceName:void 1
+getlnstanceName:std::string ,.--+clone:Moclule •
+pcountunsigned int
+isFull:bool
+isNearStarvation:bool
+isStarving:bool
+isTerminator.bool
+islnitiator.bool
+getParam:bool
+se!Param:bool
+getOutput:bool --
+getlnput:bool
+isOutput:bool
+islnputbool
+outputs:std::map<std::string, T
+inputs:std::map<std::string, Te
+createOutput:TerminalPtr
+createlnputTerminalP!r
+removeOutputvoid
+inputsRemove:void
+getChildren:std::vector<Modul1
+getChildren:const std::vector<I

putcount:int

60

A Connection is used to
transmit audio data between
two terminals. It is
analogous to a wire, and is
what contains the queue that
SignalButrer data travels.
This is how a module can
connectto another module.

Modules have terminals,
which can be connected
together to pass audio
signals. Some terminals
are treated as input, and
some are treated as
output.

syn::Terminal

+Terminal
+-Terminal
+name:const std::string &
+disconnectvoid
+isConnected:bool
+connectvoid
+connectlon:ConnectionPtr
+module:const Module &
+module:Module &
+push:void
+pop:void
+frontSampleBuffer1t•
+high:bool
+low:bool
+empty:bool
+size:unsigned int
+done:bool
+highMark:unsigned int
+lowMark:unsigned int

name:const std::string
done:bool
highMark:unsigned int
lowMark:unsigned int
connection:ConnectlonPtr

Figure 22. Subsynth unit generator design [UML].

Conceptually, Module is a black box containing a signal generator (source), processor,

or an output (sink). Signal generation could happen by a mathematical function or a

procedure (for example: sine, cosine, saw, noise, ADSR envelope), from audio samples

(wave, mp3 file), or even from a network stream. Processing units could be defined in

many ways. Some common filters include DC offset, gain, pitch shift, reverb, Doppler

shift, localizers for 3D positional sound, and distortion [Steiglitz96]. An output sink

represents a route to the computer's sound hardware or possibly to an output file. With

www.manaraa.com

61

the basic audio generalizations in Figure 19, and Figure 22, Subsynth's users will be able to specialize

their own Module types as needed.

Configuration

To specify and arrange sound networks, we did not want to tie the user to one

method. Therefore, configuration in Subsynth is decoupled from the audio design. The

audio design by itself already provides a well-defined API for configuration allowing

direct connection of modules using native C++ method calls. This gives the programmer

fine-grained access to details when needed. In addition we want to facilitate higher-

level configuration, such as through scripts, which allow a more data driven method to

specify arrangements of modules. We call these higher-level components for

configuration builders.

Builders are objects that know how to construct an audio synthesis network. A builder should be

thought of as a factory [Gamma95], which is basically an object that knows how to create something

based on some input request. Builders have a one-way dependency upon the audio design so that new

builder designs are possible without affecting the existing toolkit. This decoupling is useful to users

who may want to implement their own builder objects to extend or replace functionality with their

own.

Builders are also useful so that audio synthesis networks may be saved to and loaded from disk.

This has important uses: authoring tools such as the one shown in Figure 23 could be built to allow

users to create new audio synthesis algorithms and save them for use later. Audio applications can

then load these definitions instead of "hard code" the algorithm in software. This provides flexibility

and helps to keep a separation between the application code and the data that defines a particular

www.manaraa.com

62

audio synthesis algorithm. This idea facilitates "data-driven" design [GameGemsl], which is

important when creating complex applications.

0
File Ed it Options Help

Se ect a Pane
Configure
Connection
Performance
Messages

• : dd to config file:j_m_ix_e_r._co_n_f-'iu:....------------------'li
: @ 0 0
/ SeJ~~cT Ve rt ex Edu e

c:>CjCOnfig Utils
0- Cj Wizards

Synth Panel
Synth Perf Panel

0

Layout

Instance Name: \,~T~ri_an~g~le~W~a_ve~-----~
'~~rrii!_d ul(~ll_;i(p~odlJ~l!S. ~arious'!a~E'!tJ>.~!_5. _ ,

Preferred LO D j Default ..,.. I ~(
~!eXi'~-d l~velofilel~U to ~se "N'!~n s_e_rviclnq

Initial Value l Triangle wav "'I
1E}§!_~al_!!:_:~~_ll_~!~~~---- ...

OK ! I Apply ! I Cancel ! I~

Preferred LOO l=H=ig'=h============='
!!~!r~tf 1~v~_l_o(d_~t~i!~_11~~~viclng this~

Initial Value j File stream "'I
!~'!~_:..raiioeat-=-1-:oti>T:O-:--==--=----

<stri ng)\WavSourceMod ule

Fi le name (String)\${HOME}/ samp les/bok.wav

11 Help I

Figure 23. Audio synthesis network authoring tool.

Task Management System

=

We have designed a concept called the runner, which is responsible for executing the

modules in a given synthesis network. The runner is decoupled from the main audio

system in case the user would like to use or implement a different solution. For

example, new runner systems can be customized to operate the synthesizer optimally on

inexpensive consumer PCs or high-end workstations and supercomputers. The task

management system also includes utilities for performance measurement that could be

used by the scheduling system and could be displayed to evaluate a particular

scheduling algorithm.

www.manaraa.com

63

Implementation

In this section, we present the specific implementation of the design discussed above. First, we

present external subsystems we decided to rely upon in order to abstract Subsynth away from the

system hardware and the operating system. Next we present how we implemented the unit generator

design, which is our core audio framework. Finally, we present our own specific extensions to the

core that we include with the toolkit that ultimately provide the features that users will find useful

about the toolkit.

Technology Choices

Part of our initial research work for the implementation included a search of available

technologies to use under our system's design as outlined above. We knew early on that Subsynth

should be as portable as possible. Therefore it was understood that Subsynth would need to sit upon,

or depend on, some system abstractions. From the requirements, we needed the following:

• Threads

• Audio Output

• Configuration File Reader

As we began the design process we evaluated many system abstractions. We selected the

following specific implementations:

VaPoR

VaPoR is a portable runtime layer that comes with the VR Juggler project [VRJuggler]. It

abstracts system threads, NSPR [NSPR] threads, BSD sockets, and native serial port IO. We choose

VaPoR because of our previous experience with it and other sync and threading abstractions. VaPoR

offers a C++ interface on top of several subsystems, which provides an easy to use interface with the

most portability.

www.manaraa.com

64

PortAudio

PortAudio attempts to abstract an audio system and currently provides implementations for each

of the major consumer platforms: Win32, MacOS, IRIX, LiNUX, and other UNIX platforms.

PortAudio has a simple streaming audio interface and is in use by many real-time audio tools. We

chose PortAudio because it is very small and efficient compared to other streaming interfaces we

looked at (OpenAL). In our tests, PortAudio had noticeably less latency and less noise than OpenAL.

CppDOM

CppDOM [CppDOM] is a fast, lightweight XML [XML] tokenizer. It offers an intuitive C++

DOM (Document Object Model) representation and is very easy to integrate with a project. Subsynth

uses XML files to parameterize attributes. Parameterization of attributes away from the code allows

them to be changed without recompiling. We chose CppDOM because it is very lightweight and

offers an easily traversable DOM tree in memory. This allows us to store configuration information

in the DOM tree structure if needed. Other options we looked at were the VR Juggler JCCL

[VRJuggler], Xerces C [Apache], and writing a custom configuration file parser. Xerces and JCCL

are too complex for our needs, and writing a custom file parser had no benefit over CppDOM.

These three tools are the only external subsystems that Subsynth depend upon (besides native

C++) and are referred to as Subsynth's dependencies. Subsynth is implemented only in terms of

these dependencies and C++. The use of C++ and these tools facilitates the portability of Subsynth.

Core Audio Framework

Implementing the Module, Terminal, Connection paradigm was a matter of filling in the code

behind the interface designs presented in Figure 22. For example, each module has an update ()

method that is invoked to cause the module to perform a block of processing on its terminals. See

Listing 1 for an example of what a typical Module update () method looks like. Update is a

www.manaraa.com

65

method that belongs to every module, that when called attempts to do a block of processing for that

module's terminals. Modules also have open and close methods, as well as methods for accessing

and configuring terminals.

void SinkModule::update()
{

II if connected, then suck data from the queue
II and throw it away ...
if (mMonoAudioinput->isConnected())
{

unsigned int size = O;

if (!mMonoAudioinput->empty())
{

SampleBufferlf* read_buf = mMonoAudioinput->front();
size = read_buf->size();
mMonoAudioinput->pop();
SampleBufferRepos::instance()->putback(read_buf);

II record how much was processed ...
this->setPutCount(size);·

else
{

this->setPutCount(0) ;

Listing 1. A simplified update() procedure.

In implementing the Module, Terminal, and Connection code, several internal issues

appeared: how to represent the digital signals, how to efficiently allocate blocks of memory for signal

data, how to allow asynchronous processing of modules in order to support multiple processors. Next

we present how these implementation issues were addressed. The Producer/Consumer pattern is how

we addressed asynchronous processing, the FlyWeight pattern is how we addressed fast allocation of

large objects, and SampleBuffer is how we represent our data signals.

Producer/Consumer Pattern

One problem we had to solve was how to transport the data between modules. Since we want to

be able to execute modules in any order and in parallel with other modules, we know that the module

will need some way to cache the data for its connecting module to receive asynchronously. In

distributed computing, a common design pattern to solve this problem is the Producer/Consumer

www.manaraa.com

66

pattern [ProducerConsumer] (Figure 24). Design patterns describe simple and elegant solutions to

specific problems in object oriented software design [Gamma95]. In Subsynth, we have one producer

module and one consumer module, and we use a queue as a drop/pickup point for the audio signal

data transferred between the two. To give us control of production we use a watermarking system.

The producer module polls the queue's watermark, if not high then the producer will push data into

the queue. The consumer can asynchronously poll the queue for data, if the watermark is not too low

then it will obtain the object for reading.

data data

queue
1 .. n request
slots

poll

Figure 24. The producer consumer pattern.

The Producer/Consumer pattern coordinates the asynchronous addition and removal of

information or objects. Generally, the Producer/Consumer pattern uses the Guarded Suspension

pattern [GuardedSuspension] or the Balking pattern [Balking] to manage the situation of a Consumer

object wanting to get an object from an empty queue. In Guarded Suspension a method call suspends

execution until a precondition is satisfied. In Balking a method simply returns if a precondition is not

satisfied. The implementation of the Producer/Consumer pattern in Subsynth is called

SampleBufferQueue (Figure 25), and it uses the Balking pattern in order to give up

processor time for other tasks to execute. The precondition we use in our Balking

implementation is a watermark system so that queues do not become too full or too empty. The

object in Subsynth that is produced and consumed from the SampleBufferQueue is

called the SampleBuffer, which we explain in the next section.

www.manaraa.com

~ tvP9:cia5s - .. ____
syn::F1.114NeightPool

+FIWl/eighlPool
+-FIWl/eighlPool
+autoGrow:bool
+acquire:void
+tryAcquire:bool
+release:void
+resize:void
+size:unsigned int
+available:int
+empty:bool
+take:void
+putback:void

autoGrow:bool

/II.

67

fioai:iYPename 6AfAJYFi~ 1
L1 :int CHAN = I ----------syn::SampleBUffer

+SampleBuffer
+size:unsigned int
+resize:void
+bytes:unsigned int
+capacity:unsigned int
+recapacity:void
+data:DATA_TYPE"
+operatorO:DATA_TYPE &
+operatoro:const DATA_ TYPE &
+frame:DATA_ TYPE"
+frame:const DATA_ TYPE"
+begin:iterator
+end:iterator
+tbegin:frame_iterator
+fend:frame_iterator
+fill:void
+fill:void

~

1YP.!1Xe~~!.
std::queue<_type,std::list<_type

syn:.WatermarkedQueue

+WatermarkedQueue
+-WatermarkedQueue
+highMark:unsigned int
+lowMark:unsigned int
+high:bool
+low: boo I
+empty:bool

highMark:unsigned int
lowMark:unsigned int

6

O syn::SampleBUfferQueue syn::Singleton<SampleBufferRe
syn::SampleBufferRepos 1 .. " 1-------------1 <--

~~~~~~~~~-te>-~-71 -
+SampleBufferRepos 
+take:void 
+putback:void 
+bufsize:unsigned int 

blockSize:unsigned int 

SignalBuffer object memory is 
managed by the 
SampleBufferRepos. 
This allows the system to reuse 
objects, rather than allocate and 
deallocate through the memory 
manager- a process which can 
be slow. 

iterator 
frame iterator 

Fill is the method used to set 
the buffer from another buffer. 
Like many standard template 
library (STL) objects, 
SampleBuffer supports the 
concept of iterators. Iterators 
are like C pointers, and are 
useful in case it is needed to 
come back at a later time. 

+SampleBufferQueue 
+-SampleBufferQueue 
+done:bool 

done:bool 

The queue has high and low water 
marks. This metric allows modules 
to evaluate when to produce more 
data for the queue. 

Figure 25. Producer/consumer implementation in Subsynth [UML]. 

SampleBu.[fer 

The SampleBuffer in Figure 25 is the basic medium in which we store digital audio and 

control signals. It represents a block of audio signal samples. When a module looks for input to 

process, or when it generates some output, it produces (or consumes) a SampleBuffer. Using a 

block of data rather than individual sample values introduces some latency, but it increases processing 

efficiency because the overhead of function calls, conditional expressions, and synchronization points 



www.manaraa.com

68 

become amortized over the length of time it takes to process the block. The longer the block, the 

more efficient processing can be. However, longer blocks lead to longer reaction times to user input. 

The size of this block represents a tradeoff between efficiency and latency in response time and is a 

parameter that is configurable by users of the Subsynth toolkit. 

Flyweight Pattern 

Subsynth needs to be flexible, but this should not impact its performance. If implemented 

naively, production and consumption of the SampleBuffer blocks could impact the system's 

performance negatively. There is a design pattern for fast allocation and destruction of large objects 

called the Flyweight pattern [Flyweight]. In Subsynth, we always allocate and deallocate 

SampleBuffer objects from our own managed memory pool of objects called the 

FlyWeightPool (see Figure 25). This allows the system to reuse objects rather than allocate and 

deallocate through the system memory manager, a process that can be slow in this case because it is 

too general. 

Subsynth Audio 110 Streams Utility Library 

To help facilitate code reuse, we also wrote an audio I/O streams library. These streams 

are used mainly in the specialized source and sink (output) module types (Figure 26, Figure 27). Our 

audio streams library was modeled after the standard C++ iostreams interface [IoStream], and it 

provides a utility library that extensions to the core can use to read or write audio data from a 

computer's file system or network. 



www.manaraa.com

o __ syn: __ ·:w_w_:11_u_d_io_1St_r_ea_m_-f 

+WavAudiolStream 
+-Wa¥Audio1Stream 
+open:bool 
+isOpen:bool 
+good:bool 
+bad:bool 
+eof:bool 
+read:void 
+gcount:int 
+format:constAudioFormat & 
+close:bool 
+numsamps:int 
+seek:void 
+numbytes:int 
-seek_data:void 

syn::AlldiolStream 

+-AudiolStream 
•open:bool 
+read:void 
+close:bool 
+ isOpen:bool 
+seek:void 
+eof:bool 
+good:bool 
+bad:bool 
+ format:const Audio Format & 
+gcountint 

Operation 

69 

AudiolStream was designed 
to be used similar to the 
C++ standard template 
library (STL) std::istream 
type. It is specilized for the 
streaming of audio data. 

r ~~ 
_syn:_·_:S_a_m_pl_eB_uff_,_e_r_ISt-re_a_m~ JlSc TYPE:typenam~ 

+SampleButrerlStream 
+-Sample8utrer1Stream 
+setSampleBuf:void 
+open:bool 
+read:void 
+close:bool 
+isOpen:bool 
+eof:bool 
+good:bool 
+bad:bool 
•gcount:int 
+format:constAudioFormat & 

syn:OsclStream 

+OsclStream 
•-OsclStream 
+open:bool 
+read:void 
+numsamps:int 
•close:bool 
+isOpen:bool 
+eof:bool 
+good:bool 
+bad:bool 
+gcount:int 
+format:const AudioFormat & 

name:const std::string 
amp:float 
dcOtrset:float 

syn::AudioFormat _ 2 
~~~~~~~~~~--f.E,-<> 

freq:float
amp:float
phase:float
dcOtrset:float

I

I
I
I

I !Stream that can read .wav I
files from a disk or
std::istream.

+samplingRateHz:int
+channels:int
+datatype:SampleType

+AudioFormat
•copy:void
•AudioFormat
+operator=:const AudioFormat &
+operator==:bool
+operator!=:bool
•sampsize:int
+framesize:int

Packing
Sample Type

¢i syn::AdsrlStream

+AdsrlStream
•-AdsrlStream
+trigger:void
•release:void

attackTime:float
decayTime:11oat
sustainlevel:ftoat
releaseTime:float

Figure 26. Audio Input Streams [UML].

0 syn:.'SawOsc -----------<
•SawOsc
+generate:float
+samplesPerOsc:unsigned int
•reset:void
-on_change_of_freq_or_sampr

freq:float
sampRate:11oat

OsclStream can be
based on any one of a
number of"osc"
primitives that we have
defined such as the one
above.

Each •osc• primitive is
an efficient signal
generator, which has a
standard interface.

www.manaraa.com

70

syn::IWdioOStream

0 sim::PortAudioOStream 0 Sjlll::PablioOStream

•--AudioOStream
•open:boo/ •PablioOStream

•PortAudioOStream •isOpen:bool •-PablioOStream
•-PortAudioOStream •canAcceptMoteData:bool

~ •open:bool
•open:bool •wnte:bool - •isOpen:bool
•isOpen:bool • pcount:int •canAcceptMoreData:bool
•canAcceptMoreOata:bool •close:bool •write:bool
+write:bool •flush:voki •pcount:int
•pcount:int •close:bool
•close:bool I L\ ··~ •flush:void
•flush:void •formatconst syn Aud10Format
•formatconst syn::AudioFormat

numBuffers:signed int
~ numBuffers:signed int

bulSize:signed int (
~ bulSize:signed int

'~ I
0 syn:OpenALAudioOStream O Sjlll::RawAudioOStream 0 syn:.WavAudioOStream

•OpenALAudioOStream •RawAudioOStream •WavAudioOStream
•-OpenALAudioOStream •-RawAudioOStream •-WavAudioOStream
•open:bool •open:bool •flush:void
•isOpen:bool •isOpen:bool •open:bool
•resiZeBuffers:void •canAcceptMoreData:bool •isOpen:bool
•canAcceptMoreData:bool •write:bool •canAcceptMoreData:bool
•write:bool •pcount:int •write:bool
•pcountin1 •close:bool •pcount:int
•close:bool •flush:void •close:bool
+flush:void
•formate on st syn:AudioFormat name:const std::string name:const std::string

context:syn::AudioContext

-~ ' 'II
syn:AudioFormat

•samplingRateHz:int
•channels:int
•datatype:SampleType

•AudioFormat
•copy:void
+AudioFormat
•operator=:constAudioFormat &
•operato=:bool
•operator!=:bool
•sampsiZe:int
+framesiZe:int

Packing
SampleType

Figure 27. Audio output streams [UML].

Audio Format Utility

We implemented data conversion routines between common audio data formats including any

combination of the following five formats: unsigned/signed 8- and 16-bit integer and 32-bit floating

point. For speed and generality, we implemented this using template meta-programming

[AlexandrescuOl], creating generic C++ template code that handles the twenty-five conversion cases

www.manaraa.com

71

with no loss in runtime performance (Listing 11 Appendix B). With this technique, only the code

needed for each conversion case is compiled in. Currently, only the iostreams in Subsynth need

conversion since any format may be requested to open each stream, although future additions may

take advantage of this utility.

DSC-Concept Library

Some module and stream implementations need access to mathematical functions to generate

signals such as noise or sine waves. We took these basic digital oscillator concepts and created a

library of them for inclusion by authors of new modules or stream implementations. We call each

oscillator (OSC) object a concept because it embodies a well-defined independent periodic function.

There are seven lightweight OSC-Concept objects currently implemented - triangle, sine, saw,

square, white noise, pink noise, and ADSR. Each OSC-Concept is written as a simple standalone

object depending only on C++.

Included Modules

We include several unit generators in Subsynth in order to test system performance and baseline

functionality. These new specialized types (Figure 28) include:

www.manaraa.com

72

• Two digital oscillators. One for wave-table lookup, and one for procedurally generated

functions.

• Operators for multiplication and summation. These can be used for modulating a signal's

amplitude by another, or for mixing several signals together.

• High and Low pass Filter. These remove high or low frequencies from a signal, resulting in

thin or muffled sounds.

• Signal mixer and splitter. This can add several streams into one, or replicate one stream

into many.

• Audio Stream Adaptor. This adaptor module can read from and write to any

AudioIOStream. Currently this means .wav or .raw PCM files are supported. In the

future, a network stream could be created and used with this module.

• OSC-Concept Adaptor. This adaptor module can read from one of the procedural signal

generator types in the OSC-Concept library described in the previous section.

• Envelope generator. This generates a signal that can be used to provide the effect of attack,

decay, sustain, and release when modulated with another audio signal.

• Sink. This provides output to audio hardware.

www.manaraa.com

syn::Waw TableOscModule

•WaveTableOscModule
+-WaveTableOscModule
•update:void
+open:bool
+isOpen:bool
+close:void
+clone:Module *
+getParam:bool
+setParam:bool

r---l9iC.:i:Y.P.f~~~e-
OscModuleBase

syn::OscModule

+OscModule
+-OscModule
•clone:Module *
+update:void
+open:bool
•isOpen:bool
+close:void
+osc:OSC_TYPE &
•osc:const OSC_TYPE &

73

0 syn::Module

+Module
•-Module
+update:void
•open:bool
•close.void
•setlnstanceName:void
+getlnstanceName:std::string
+clone:Module *
+pcount:unsigned int
+isFull:bool
+isNearStarvation:bool
+isStarving:bool
•isTerminator:bool
+islnitiator:bool
+getParam:bool
+setParam:bool
+getOutput:bool
+getlnput:bool
+isOutput:bool
+islnput:bool
•outputs:std::map<std::string, T
+inputs:std::map<std::string, Te
+createOutput:TerminalPtr
•createlnput:TerminalPtr
•removeoutput:void
+inputsRemove:void
+getChildren:std::vector<Module
+ge!Children:const std::vector<~

putcount:int

__ J /j, ~

syn:lnstrumentModule

+lnstrumentModule
•-lnstrumentModule - •update:void -~

+open:bool
+isOpen:bool
+close:void
+clone:Module *
+getParam:bool

f<J-- •se!Param:bool
•isOutput:bool
•islnput:bool
+getOutput:bool
+getlnput:bool
•addModule:void
+ge!Module:bool
+exposelnput:void
+exposeOutput:void
•exposeParam:void

l.--4 .__,

Q syn:OStreamModule

+OStreamModule f<J- +-OStreamModule
+update:void
+open:bool
•isOpen:bool
•close:void
+clone:Module *
+getParam:bool
+setParam:bool

•AdsrEnvModule
•-AdsrEnvModule
+clone:Module *
+getParam:bool
•setParam:bool

B_:typ~~~ OPERATo
syn::Operato

\ stream:AudioOStreamPtr

+OperatorMo
•-OperatorM
+update:void
+open:bool
+isOpen:boo
•close:void
+clone:Modu
•setParam:b
+getParam:b

rModule \
\

dule
syn::MixerModule 0 syn::IStreamModule

odule

•MixerModule +IStreamModule
I +-MixerModule •-IStreamModule

+update:void +update:void
le* +open:bool +open:bool
ool +isOpen:bool +isOpen:bool
col +close:void +close:void

•clone:Module * +clone:Module *
+getParam:bool +getParam:bool
+setParam:bool +setParam:bool

stream:AudiolStreamPtr

Figure 28. Subsynth Modules [UML].

syn::FilterModule

+FilterModule
•-FilterModule
+update:void
+open:bool
+isOpen:bool
+close:void
+clone:Module *
+getParam:bool
+setParam:bool

syn::SplitterModule

+SplitterModule
•-SplitterModule
+update:void
+open:bool
+isOpen:bool
+close:void
+clone:Module *
+getParam:bool
+setParam:bool

doneState:bool

Using the components included with Subsynth, many audio synthesis methods may be created.

For example, the digital oscillators support Wavetable lookup synthesis in which the wavetable can

be initialized from either disk, AudioIStream, or from one of the OSC-Concept generator types

www.manaraa.com

74

described above. To support frequency modulation synthesis, the digital oscillators support a

frequency control signal input. The input works with any SampleBuffer audio signal in the range

of -1 to l, and is a linear input (converted to exponential frequency scale 20 - 20000Hz internally).

The addition operators facilitate additive synthesis and wavestacking. The multiplication operators

can be used to support amplitude modulation synthesis. Subtractive synthesis is possible through any

of the filters. These five audio synthesis methods, and combinations of them, offer a large variety of

possibilities. New audio synthesis methods are possible by adding new user defined module types to

the system. This extensibility is made possible through our generic audio framework design, and is

what enables Subsynth to be a general tool to support many audio synthesis methods.

Static control parameters on each module are also available for setting attributes such as

amplitude, frequency, triggering, and stopping each sound. Some modules have other static

parameters such as envelope or filter cutoff. Depending on the module, static parameters set defaults

or interact with the control signal. Parameters are usually how an application will interactively

control Subsynth.

Included Builders

Builders are responsible for configuring a network of Subsynth modules. Subsynth defines a

one-way dependence of builders to the core audio toolkit (Figure 29). In the figure, the builders

(ModuleFactory, and SubsynthinstrumentBuilder) depend on the core audio framework design

(Module and InstrumentModule). The benefit to keeping configuration separate from the core is that

the user is free to choose existing, or define new, methods of configuration.

www.manaraa.com

75

t-
s-yn-::_S_in-gl-et-on_<_M_od_u_le-F-ac-to_ry_,.-1- - - - - -~ r~~-1 syn::ModuleFactory ;;;--

+ModuleFactory ,1\
+reg:void -'
+unreg:void
+create:bool

----- - - syn::lnstrumentModule
- 0 ·'L -

+create:bool
+readlns!Fields:void
+readlnsts:void

Figure 29. Subsynth Builder UML diagram.

Each builder is responsible for the creation of "instruments". A Subsynth Instrument is an

aggregate type that provides a fac;:ade [Gamma95] to a sub-graph of Subsynth modules. This fac;:ade

interface is derived from the Module interface so that an instrument module will appear the same as

any other single module. This way, users can expect to use these complex Instrument constructs

in their graph designs.

Internally, the instrument contains an arbitrary sub-graph of modules, but the user doesn't need to

worry about this, because this is hidden by the fac;:ade. The fac;:ade (Figure 30) can be configured to

selectively expose internal parameters, inputs, and outputs to the module sub-graph contained within.

There are two Builder types that Subsynth currently provides to create Module objects:

www.manaraa.com

76

• SubsynthlnstrumentBuilder. This builder reads an instrument definition data file, which is

an XML file format that we have defined that configures an Instrument. This format

includes ways to add the internal module sub-graph through the addition, configuration, and

connection of individual modules. In addition, the format allows configuration of the fa~ade

to expose sub-graph parameters, input signals, and output signals. See Listing 10 for an

example Subsynth instrument definition.

• ModuleFactory. This builder holds a collection of pre-registered modules. To make

ModuleFactory create a new module, a string is given that matches one of the pre-

registered modules. The SubsynthinstrumentBuilder makes use of this module so

that it can look up known modules from a given string in the XML file.

syn::lnstrumentModule syn::Module

+lnstrumentModule
+~lnstrumentModule

+update:void
+open:bool
+isOpen:bool
+close:void
+clone:Module *
+getParam:bool
+setParam:bool
+isOutput:bool
+islnput:bool
+getOutput:bool
+getlnput:bool
+addModule:void
+getModule:bool
+exposelnput:void
+expose O utp ut:vo id
+exposeParam:void

Figure 30. UML diagram for the Instrument type.

Included Runners

Once modules have been created and connected into an audio synthesis graph, they need to be

processed regularly. This is done by calling the module's update () method (Listing 1). This

www.manaraa.com

77

method can read data from the module's input terminals, process it in some way, and write it to the

output terminals.

Normally, a design of this type is too slow to do signal processing. In Subsynth, audio signals are

passed around in blocks of samples (Figure 31), rather than individual samples. This allows us to

amortize the cost of function call overhead over many samples. In addition, the update ()

functions have multiple special cases to provide maximum performance for different states that the

user can select. For example, some possible cases we optimize for are the usage of audio rate, control

rate, or parameter to control the generated audio. Another set of cases we optimize for are in signal

generation using no, linear, or cubic interpolation. To illustrate, our WaveTableOsc module has

four conditional cases, two for control rate, and two for static. Of these, two are for linear

interpolation, and two use no interpolation.

r---iifoai:iYpenameDATAJvP~ l Templated by datatype, and r--l1J.n.!_C_!iA..!-! =:... _ _ _ _ _ _ by number of channels.
syn::SampleBuffer

+Sample Buffer
+size:unsigned int Attributes for number of
+bytes:uns.igned int samples, frames, and bytes
+capacity:unsigned int in the block of data.
+resize:void
+recapacity:void
+data:DATA_ TYPE ..
+operatorQ:DATA_ TYPE &
+operatorQ:const DATA_ TYPE &
+frame:DATA_ TYPE ..
+frame:const DATA_ TYPE ..
+begin:iterator
+end:iterator
+fbegin:frame_iterator
+fend:frame_iterator
+fill:void
+fill:void

iterator
frame iterator

Data access indexed by sample,
or by frame. STL iterators are
included for intuitive data traversal
per frame or per sample.

Figure 31. SampleBuffer data type.

www.manaraa.com

78

If a module is not updated frequently enough, the chain of modules that receive data from it will

starve. This can cause stuttering or other disruptions to the audio output. This implies the need for a

scheduler, something that can produce an optimal execution ordering in which to minimize these

starvation cases (given the Subsynth graph topology).

We have provided a container in which to execute the audio synthesis network that we call a

"Runner" (Figure 32). A programmer using Subsynth is free to choose between using the provided

Runner or calling update () within their own specialized runner. A Runner is responsible for

calling update () on all the modules in the network in the order that it schedules. To facilitate

scalability from low-end to high-end systems, Subsynth's Runner uses threads to spread the

update () execution load across multiple processors. To make the runner flexible, it supports

pluggable Scheduler objects (Figure 33), which define the scheduling algorithm to use. The

scheduling algorithm defines the order of execution, thread, and task dependencies. Subsynth

provides a default scheduler that can be replaced with any user-defined implementation. For most

customizations, programmers will not need to completely redefine a runner, they can just replace the

scheduling algorithm to better fit their needs. Next we discuss a few case studies, which illustrate

usage of Subsynth, and some higher-level applications that benefit from Subsynth.

www.manaraa.com

79

syn:: Scheduler

0 .. 1 /\

0 syn::Runner syn::RunnerThread

+Runner 1..* +RunnerThread
+~Runner

~ ' +start:void .,,.,
+run:void +kill:void
+stop:void -threadFunc:void
+modules :std ::vector.:Mo dule Pt1

scheduler:Scheduler *

Figure 32. Subsynth task management.

syn:: Scheduler

+Scheduler
+~Scheduler

+scheduJe.void
+tasklist:std::vector.:ModulePtr::. &
+size:int

Figure 33. The Scheduler abstract interface.

www.manaraa.com

80

CHAPTER 6 CASE STUDIES

In this section, we will showcase three tools that have been built upon Subsynth. The purpose of

this is to illustrate the effectiveness of Subsynth as a generic audio synthesis subsystem for use by

higher-level tools. These higher-level tools we showcase are: SubsynthMIDI, Sonix, and GAME.

SubsynthMIDI is a software MIDI interface on top of Subsynth that makes it able to be used by

musical applications and also provides a limited sound object representation for sonification. Sonix is

a simple sound object library, providing simple control over sampled sound playback. GAME is a

music engine employing fractal techniques for generation of music events in response to input data

from scientific applications.

SubsynthMIDI

SubsynthMIDI provides a MIDI implementation on top of Subsynth. This interface to Subsynth

is intended to enable musical applications. Alternatively, it could be used for sound effects in

sonification and virtual environments.

syn::SubsynthMidi

+SubsynthMidi
+~SubsynthMidi

+open:bool
+trigger:void
+release:void
+program ch an g e :void
+close:void
+midimsg:void

Figure 34. The SubsynthMIDI API.

To provide the ability to switch between the computer's native hardware synthesizer and the

Subsynth software synthesizer, a MIDI abstraction was created (Figure 34) that could provide an

www.manaraa.com

81

interface to either. Several implementations of this interface were then specialized for each operating

system, including one for Subsynth.

<SubsynthMIDI>
<instrument channel="l" value="female-voc.inst"/>
<instrument channel="10" value="timpani.inst"/>
<instrument channel="3" value="guitar.inst"/>
<outputport value="pa"/>
<threads value="l"/>
<maxpolyphony value="6"/>
<blocksize value="512"/>

</SubsynthMIDI>
Listing 2. Example SubsynthMIDI configuration file.

The SubsynthMIDI interface is relatively simple, mirroring the MIDI specification. The

internal implementation supports arbitrary polyphony, trigger/release of notes, pitch, channel, and

note velocity. MIDI control messages are not implemented yet, but should be trivial to do so.

Because Subsynth is flexible, we decided to allow the SubsynthMIDI implementation to be

configured with an XML file format (Listing 2). This configuration file allows the following options:

• Instrument to use for each of the 16 MIDI channels

• Number of overlapping sounds to play at once (polyphony)

• Number of threads to use for the synthesizer process

• Block size of the sample buffers

• Which audio port on the system to send audio data to.

To test out the MIDI implementation, a music event scheduler called a Sequencer was created.

The Sequencer is responsible for dispatching music events to the Subsynth ~1IDI APL To fill the

sequencer with music events, a MIDI file loader was created. This file loader lscans a MIDI data file

(.mid extension) and sets up the Sequencer appropriately. Using the Sequencer and SubsynthMIDI,

we have successfully tested several MIDI files of classical and popular music available on the

Internet.

www.manaraa.com

82

G.A.M.E. Toolkit for Scientific Sonification

G.A.M.E. is a music engine employing fractal techniques for generation of music events in

response to input data from scientific applications. This toolkit was needed to allow arbitrary

sonification of scientific data, and to enable collaboration with other sonification researchers. The

idea was to create a continuous stream of music that reacted with real-time response to the emerging

scientific data as the user interacted with it. The goal of this idea was to enable a sort of "wall paper"

music that could be pleasant to listen to and would impart changes in mood and hopefully increase

perception of the visualized data. This toolkit is called G.A.M.E. to mean "Grammatical Atonal

Music Engine". The "grammar" comes from the use of L-System rules, which typically model

growth processes [Lsystem]; "atonal" means that we do not make any restrictions on use of pitch.

Previous tools mapped data values to specific sets of notes that sound pleasing to most people (in an

attempt to create listenable music). The G.A.M.E. system relies on the specification of a grammar to

create listenable music. This indirect mapping sh?ws promise where earlier direct mapping efforts

produced less desirable results [Bryden02]. This system enables listenable music sonification for

many types of scientific data and other applications.

The design has four parts: a generalized L-System framework, an L-System data file loader

specialized for XML, a system for parameterization of the real-time application data, and an L-

System renderer specialized for SubsynthMIDI. Unlike sonification software that uses MIDI to

directly map musical parameters to data, the G.A.M.E. engine creates a music event stream via L-

System algorithms. Certain events in the event stream can interface with and then respond to the

application data. Next, we explain some background on L-Systems, and then present the

implementation of G.A.M.E.

www.manaraa.com

83

L-System Background

An L-System is able to produce fractal patterns modeling growth. Fractal patterns exhibit the

growth of increasing detail that is obtained through a procedural definition [Mandelbrot77]. The

fractal growth in an L-System is expressed in terms of symbolic elements that are produced by

iterating over production rules. The series of elements that are produced are what we call an "L-

string". Every L-System is defined by an axiom and a set of production rules. The axiom is the

initial L-string, and the production rules define match and replacement strings that specify how to

"grow" that string.

Lstring struct
O .. * LsystemElt
~

+id:MultivariateType
+params:std::vector<MultivariateTy1

+LsystemElt
+param:const Multivariate Type &
+param:MultivariateType &

Figure 35. L-System String Element.

In G.A.M.E., each "character" in an L-System string is called an element. Each element stores

multiple parameters, allowing for grouping of related data (Figure 35). G.A.M.E. uses this

parameterized element for use as an event. The L-string defines a list of events. Specific to the

G.A.M.E system, event types are defined that correspond to music. The resulting string becomes a

string of music events, and these music events may be mixed with other procedural events that apply

application variables to various music states such as tempo, volume, timbre, and pitch. For example,

an event could trigger or release a note while the event's parameters would include pitch, velocity,

and the channel to affect.

www.manaraa.com

84

G.A.M.E. Music Engine Implementation

The Lsys tern class in G.A.M.E. stores the axiom and production rules (Figure 36). After the

class is set up, the user can tell it to apply the rules any number of times to grow the resulting L-

string. For music this usually means increasing the complexity or texture of the music.

Q Lsystem struct
Rule

+addRule:void +mateh:Lstring
+addRule:void +rep I ace me nt: Lstri n g
+clearRules:void ~ +mate htyp e: Mate h Type
+sizeRules:int
+iterate:void +Rule
+str:eonst Lstring & +Rule
+reset:void

2 MatehType
~--- Lstring searehAndReplace - ~

1
init:eonst Lstring

~ ~

!"'-.- --
Figure 36. L-System UML Diagram.

The L-system data file format is defined using the XML DTD (XML Schema is also available)

format and is constructed with the L-system axiom and a list of production rules (Listing 12). Each

production rule has the option of either a regular expression match or an exact match. The "strings" in

the format are actually vectors of <el t> nodes. Each el t node is like a character in a string, except

that the el t node contains an extra data payload or parameters. This concept is also mirrored in the

software. The G.A.M.E. L-System XML format is not tied to music. Because of its general quality, it

could also be used for other applications such as graphics. There are predefined element types that we

use, however, that match our L-string renderer.

L-System elements are defined as music events. The first ring renderer is an event scheduler that

operates on a string of L-System elements (or music events). The renderer turns these events into

www.manaraa.com

85

MIDI events that are sent to the computer audio device. For the scheduler to work, every element

needs to contain at least a command followed by a starting time. The scheduler uses the starting time

to determine when to execute the event, and it uses the command tag to determine how to execute it.

Once it is executed, the other parameters are read. The renderer can be controlled by the application

through a parameter system. These parameters can be referenced in the L-System XML format and

then resolved on the fly as each event is executed. This allows application data to influence

parameters in the music such as pitch, timbre, volume, and tempo.

Currently, the number of parameters is partly limited by MIDI capabilities. We plan to use a

software synthesizer in the future for a greater degree of control. A software synthesizer also will

allow this work to run on any computer platform, enabling better collaboration with other researchers

who may not have access to similar MIDI hardware.

This technique is useful for selecting production rules based on data defined by the application.

This allows a more coarse-grained approach to sonify macro-scale features in the data via the

parameter system. This complements the fine-grained control for sonifying micro-scale features with

rhythm and motive changes.

So nix

Sonix provides manipulation of sound objects on top of several audio APis including Subsynth.

A sound object provides simple control over playback of sampled sounds. Sound objects are useful

to many simple virtual environment applications. The interface to Sonix is kept very simple in order

to get users up and running with sound as fast as possible. It allows one to trigger, position, change

volume and pitch, or to adjust a filter cutoff on 3D sounds. Systems using this layer expect to be

completely portable. Sonix is reconfigurable allowing audio APis to be safely swapped out at

runtime without the dependent systems noticing.

www.manaraa.com

86

Reconfiguration

Runtime reconfiguration of sound APis can be useful so that the user can experiment with quality

and latency differences of different hardware and sound APis. If no audio API is available on a given

platform, application calls to Sonix are simply ignored. This gives the benefit that no special code

application code is needed to enable or disable sound-it is all handled by Sonix.

II start sonix using Subsynth
sonix: : instance () ->changeAPI ("Subsynth") ;

II fill out a description for the sound we want to play
snx::Soundinfo sound_info;
sound_info.filename = "808kick.wav";
sound_info.datasource = snx::Soundinfo::FILESYSTEM;

II create the sound object
snx: :Sound.Handle sound_handle;
sound_handle.init("my sound for testing") ;
sound_handle.configure(sound_info);

II trigger the sound
sound_handle.trigger();
sleep(1);

II trigger the sound using a different audio system ...
son ix: : instance () ->changeAPI ("AudioWorks") ;
sound_handle.trigger();
sleep(1);

II trigger our sound object using different source data
sound_info.filename = "303riff.wav";
sound_handle.configure(sound_info);
sound_handle.trigger();
sleep(1) ;

Listing 3. How to reconfigure Son ix at runtime

The benefit of this abstraction is that when something changes, application code does not need to

be aware or do any special handling. Everything in Sonix is changeable behind the scenes during

application execution. See Listing 3 for an example of how to reconfigure Sonix in C++.

Using Sonix

Sonix only provides wavetable synthesis (see the section on Digital Audio Synthesis above).

Even though it is not a complete audio synthesis package, Sonix is still very useful to application

www.manaraa.com

87

areas such as virtual environments needing access to 3D sound objects. Here, we will provide an

example of writing an application using Sonix.

To setup a sound is straightforward as seen in Listing 4. Here, we use a snx: : Soundinfo

object to configure the sound object, which is accessed by a snx: : SoundHandle object.

snx: :Soundinfo info;
info.filename= "crack.wav";
info.datasource = snx::Soundinfo::FILESYTEM;

snx: : Sound.Handle crack_sound ("crack") ;
crack_sound.configure(info) ;

Listing 4. Code to setup a Sonix sound

To keep Sonix running, an update function step (float time_delta) must be called

repeatedly by the application. time_del ta is the amount of time since step () was last called,

and step () should be called within the application's frame function (Listing 4). A frame function is

one that is called in an application to update its state, usually many times per second.

void frame ()
{

time_delta = getTimeChangeinSeconds(); II use a system call, or
II other API to get your time delta

sonix: :instance()->step(time_delta) ;

Listing 5. Call sonix::step() in the application's frame function.

#include <iostream>
#include <string>
#include <snxlsonix.h>

int main(int argc, char* argv[])
{

std::string filename("808kick.wav"), api("Subsynth");

if (!snxFileIO::fileExists(filename.c_str()))
{

std: :cout << "File not found: " << filename << "\n" << std: :flush;
return O;

II start sonix using Subsynth
sonix: :instance()->changeAPI(api) ;

II fill out a description for the sound we want to play
snx::Soundinfo sound_info;
sound_info.filename = filename;
sound_info.datasource = snx: :Soundinfo: :FILESYSTEM;

www.manaraa.com

88

II create the sound object
snx::SoundHandle sound_handle;
sound_handle. init ("my simple sound") ;
sound_handle.configure(sound_info);

II trigger the sound
sound_handle.trigger();
sleep(1);

II trigger the sound from a different position in 3D space ...
sound_handle.setPosition(10.0f, O.Of, O.Of);
sound_handle.trigger();
sleep (1) ;

II this simulates a running application ...
while (1)
{

sonix::instance()->step(time_delta);

return l;

Listing 6. Example C++ program that uses Sonix to play a sound using Subsynth.

Sonix Architecture and Design

Sonix was designed to be very simple to use, while offering useful features to general VE

applications that need sound. In Figure 37 we see the API for Sonix. The main parts that a

programmer will use are shown, namely the snx: : SoundHandle class, and the sonix singleton

class. The sonix singleton class is used to start, stop and reconfigure the sound system. The

snx: : SoundHandle class is used to manipulate individual sounds. Both classes must be used for

any sound to be heard.

www.manaraa.com

89

snx::SoundHandle snx::Singleton<s on ix>
son ix

+init:void
+trig g er:voi d
+isPlaying:bool
+ s etRetri g g erab I e:voi d
+isRetri g gerabl e:bool
+stop:void
+pause:void

+ setListenerPositi on:voi d
+ g etli st en erPos iti on :void
+changeAPI:void
+configure:void
+step:void

+unpause:void
+isPaused:bool
+setAmbient:void
+isAmbient:bool
+ s etPitch B end:voi d
+setVolume:void
+ s etCutoff:void
+setPosition:void
+ g etPos iti on :void
+set Li st en erPos iti on :void
+configure:void
+rem ove:voi d

Figure 37. UML diagram of the Sonix application programming interface {API).

Starting the Sonix system is easy (see Listing 7). The call needed to start the system is

changeAPI (). Currently OpenAL, AudioWorks, and Subsynth toolkits are supported by Sonix.

To select one for use, one of the strings "OpenAL", "AudioWorks", or "Subsynth" is passed to

changeAPI () .

sonix: : instance () ->changeAPI ("Subsynth") ;
Listing 7. Code to startup and initialize Sonix to use the Subsynth audio subsystem.

Sonix was designed using design patterns and an object-oriented approach (Figure 38). When

designing Sonix, we used many design patterns that were appropriate to a simple audio system

[GameGems2]. They are as follows:

• Adapter (snx: : Soundimplementation). This adapter provides a common interface to

the underlying sound API.

• Prototype (snx: : Soundimplementation). Making

snx:: Soundimplementation a Prototype allows a new cloned object to be created

from it that has duplicate state.

www.manaraa.com

90

• Plugin Store (snx: : SoundFactory). Each sound implementation is registered with a

Store called snx: : SoundFactory. This Store allows users to select items from its

inventory. Another name for Store is "Abstract Factory".

• Abstract Factory (snx: : SoundFactory). The Store can create new instances of the

requested sound implementation. The Abstract Factory consults its Store of registered

objects, and if found, makes a clone of that object (Prototype pattern). The Abstract Factory

is used in Sonix to configure the Bridge.

• Bridge (sonix interface class and snx: : Soundimplementa ti on). The sonix class is

the audio system abstraction which is decoupled from its implementation

snx:: Soundimplementation. This way the two can vary independently. Bridge also

facilitates run-time configuration of the sound APL

• Proxy(std: :stringandsnx: :SoundHandle). snx: :SoundHandleishowusers

manipulate their sound object. snx: : SoundHandle is actually a proxy to a

std: : string proxy. The std:: string Proxy is what allows Sonix reconfiguration of

resources. Rather than using pointers which can easily be left to dangle, the std: : string

serves as a lookup for a protected sound resource located internally to the Sonix tool. The

snx:: SoundHandle wraps this std:: string to provide a simple and familiar C++

object to use as the sound handle. The sonix class acts as Mediator between every Proxy

method and the actual audio system Adapter.

www.manaraa.com

91

snx::Souna Hand le s n x:: Sing I eton <son ix> snx::Sountflmp1ementation
son ix

+SoundHandle +Sound Imp I em entati on
+SoundHandle +trig g er:voi d -rclone:void
+init:void +is Playing: b ool +-Sound Imp I em entati on
+-soundHandle + s etRetri g g erable:voi d +copy:void
+trig g er:voi d +isRetriggerabl e:bool 1 l:._ +trig g er:voi d
+isPlaying:bool +stop:void - +isPlaying:bool
+s etRetri g g erab I e:voi d + p au s e:voi d + s etRetrig g erabl e:voi d
+is Retri g g erab I e:b ool + u n p au s e:voi d +is Retri g g erab I e: bool
+stop:void +isPaused:bool +stop:void
+pause:void + s etAmbient:void +pause:void
+ u n p au s e:voi d +isAmbient:bool + u n p au s e:voi d
+isPaused:bool + setPitchBend:void +is Paused: b ool
+ s etAm bi ent:voi d +setVolume:void +setAmbient:void
+isAmbient:bool + s etCutoff:void +isAmbient:bool
+setPitch B end:void + setPosition:voi d + s etPitchB end :void
+setVolume:void +getPosition:void +setVolume:void
+s etCutoff:voi d +set Li stenerPos iti on :void + s etCutoff:voi d
+setPosition:void +get Listen erPositi on:void +setPosition:void
+getPosition:void +changeAPl:void +getPosition:void
+set Li st en erPositi on :void +configure:void + s etListenerPos iti on :void
+ g etListen erPos iti on :void + confi g ure:voi d + getLi stenerPos iti on :void
+configure:void I +remove:void rs tartAPf.·void
+remove:void I +step:void ri~ Started·hoo/

+sh utdownAPI :void
I I + confi g u re:voi d

I
I + confi g u re:voi d

stru ct I +remove:void
snx::Sound Info I I +step:void

I I +cl ear:void
+alias :std: :string ~ 0 +bindAll:void
+d atas ource: DataSource +unbindAll:void
+filename: std:: string s n x: :Sing I et on <Sound Factory> -rhind·void
+position: g mtl: :Vec3f s nx::So u nd Factory 1 0 .. !. -runhind-void
+ambient:bool - ~ +lookup:snx::Soundlnfo &
+ retrig g erabl e: b ool + m Registered Imp I em entati on +setName:void
+repeat: int

--~
+name:std::string &

+pitch bend :fl oat +create! mp I em entati on :void
+ cutoff:fl oat +reg :void
+volume:float

+Sound Info ~-·
. 1

~ -
DataSource

Figure 38. The Sonix sound object system [UML].

Sonix supports the selection of several audio subsystems by the application through

implementation plug-ins (Figure 39). Each plug-in implements an adapter to an underlying audio

subsystem. The adapter supports a common interface that Sonix knows how talk to. Each adapter is

then registered with a factory object, which may ask that adapter to clone itself for use by whoever

called the factory.

www.manaraa.com

lsonlx
vpr::Srnglcton <son ix>

so nix

+trigger.void
+s ctRctrig g crabl e:voi d
+sctAmbicnt:void
+stop:void
+pausc:void
+unpause:vold
+mutc:void
+unmutc:void
+setPosition:vo1d
+gctPosition:void
+set I.I st en erPos ltl on :void
+gctUstcncrPos1tion:void
+cha.ngcAPl:void
+configurc:void
+configurc:void
+remove:void
+step:void

+StubSoundlmplemenu.tion
+-StubSoundlmplementatlon
+cl on e:voi d
+trigger.void
+stop:void
+ s etPos ition :vol d
+getPosltion:void
+getListcnerPosition:void
+startAPl:void
+ s hutd ownAPI :void
+isStarted:bool
+configurc:void
+configure:void
+removc:void
+cle:is.r:void
+bindAll:void
+unbindAll:void
+bind:void
+unbind:void
+step:void

listenerPosition:const vrj :Matrix

SoundF'actory knows how to
create the API back: ends. It
returns Stub if if doesn't lcnow
how to create what was requested

92

i;:i snx::vpenAL.:)ounulmp1ementat1on t;:J snx::Auu10Wor-... ounulmp1~mentat1on

+OpenAl.Soundlmplementation
+-Op enAl.Soun d I mpl cm entat1 on
+clone:void
+trigger.void
+s ctRetri g gerabl c:voi d
+setAmblcnt:vold
+isPlaying:bool
+stop:vold
+sctPosition:void
+getPosit1on:void
+g etL.i st en erPos 1ti on :void
+startAPl:void
+shutdownAPl:void
+tsStarted:bool
+configurc:void
+config1.1re:void
+rem ove:voi d
+clear:void
+bind:void
+unbind:void
+stcp:void

AIS01.1ndlnfo

listenerPosltlon:const vrj: Matrix

l I'

I OpenAL. ~
back end I

+createlmplementation:void
+reg:void

+AudioWork s Soun dim p I cm entati on
+-Aud ioWork sSou nd Im pl em entati on
+clonc:void
+trlgger:void
+setRetriggerable:void
+setAmbient:void
+mute:void
+unmute:void
+stoi:i:void
+setPos1tion:void
+ g etPos iti on :vol d
+ g etL.i st en crPositi on :void
+StartAPl:void
+shutdownAPl:void
+isStarted:bool
+configure:void
+configure:void
+remove:vold
+clear:void
+bind:void
+unblnd:void
+step:void

AWSoundlnfo

hstencrPosition:const vrj :Matrix

I Aud loWorks ~
bac:lc end I

Figure 39. Sonix plugins.

Sonix is an effective tool currently in use by several people at the Virtual Reality Applications

Center and by other people external to the center who use the open source VR Juggler toolkit. In the

next chapter we evaluate Subsynth's effectiveness as a subsystem for audio synthesis, and how it

measures up to our specified requirements.

www.manaraa.com

93

CHAPTER 7 DISCUSSION OF RESULTS

Benefits

Subsynth has been tested in a small range of applications and it shows good promise as an

interactive audio subsystem on which higher-level applications can be based. We have used

Subsynth in a virtual environment to sonify events with no perceivable change in graphics frame rate

or other critical aspects. We have also used Subsynth as the synthesizer backend for MIDI music, and

it performs well. In other words, it meets the following criteria for MIDI:

• Correct pitch for each note is produced.

• Music events occur in a timely and consistent manner, which is very important to accurately

reproduce music.

• Voice polyphony of arbitrary number is supported to produce the effect that many

instruments are playing together.

• Dynamic range of volume in response to the MIDI velocity parameter.

• Correct timbre that sounds qualitatively "good" to our ear.

Qualitatively, SubsynthMIDI sounds similar to the results produced by a range of other

commercial synthesizers.

We have also used Subsynth to build simple sound objects upon in the Sonix toolkit. Sound

quality and performance of Subsynth here matches usage of similar tools such as OpenAL. Factors

that were noticed were sound quality during pitch bending, frequency filtration, and dynamic range of

volume control.

For our last test of Subsynth we have used SubsynthMIDI in the G.A.M.E. toolkit for a new type

of scientific sonification based on continuously generating music driven by data. In the future the

G.A.M.E. toolkit may benefit from using Subsynth directly for access to more control parameters

than offered by MIDI. Currently results in G.A.M.E. with SubsynthMIDI sound similar to using

hardware MIDI directly.

www.manaraa.com

94

Since Subsynth is portable to most computing systems, using MIDI sysex becomes portable. It

becomes an option because we can rely on this proprietary feature of MIDI (tied to Subsynth),

without worry of it not being available. This is a problem when using proprietary or hardware

synthesizers that are not available at every location where the application is run.

Limitations

Proportional to the size of the configured graph, Subsynth requires a percentage of processor

power. Previous hardware synthesis solutions operated in external hardware, and did not affect the

main CPU. This is a factor to be considered, but we do not see it as a major limitation. Subsynth

could be run on a second computer, or on a separate processor in a multi CPU machine. We see the

option of running Subsynth in parallel with the main application on the same CPU as an option, not a

necessity. This option is valuable because it makes the running of an audio synthesis application

potentially easier given that the host CPU can provide enough processing power. For the case studies

we presented in this thesis, we found a Pentium III 500Mhz to be too slow to support Subsynth and a

graphical OpenGL application at the same time. Meanwhile, we found a Pentium 4 dual l .5Ghz

system to be very adequate to this task. These results were observed with Subsynth compiled with

non-optimized code and debugging symbols included. Obviously, the processor requirements have

room for decrement once Subsynth is optimized.

While running Subsynth concurrently with the main application may be an immediate

shortcoming on some systems, we do not see this as a long-term problem since future machines will

be faster. This means that the percentage of the Subsynth processor usage will continuously decrease

until it is acceptable by the most demanding applications. In addition, given the possibility to run

Subsynth on separate processors, or even separate computers, the application performance hit returns

back to the optimal state to be had when hardware synthesizers were used.

www.manaraa.com

95

A part of Subsynth that needs optimization is the parallel processing runner component in

Subsynth. It operates adequately when the number of threads is under the number of processors in

the machine, but currently consumes too much CPU due to context switches. Work should be done to

minimize thread context switches due to sleeps or yields since they have shown a lot of overhead in

our testing. Figure 40 shows our measurements during testing of this phenomenon where, on a

Pentium 4 1.5 Gz processor, the time to yield () was about 0.02 sec. This time overhead affects

time critical code such as streaming of audi0 to the hardware, or timely scheduling of music events

for control of the audio synthesizer.

--" QI

Several hundred time measurements of the yield() function on
a dual processor Pentium 1.5 Gz

0.03

~ 0.025 ~ ..
• -c

QI
E 0.02 QI ~

:I
Ill
Ill
QI 0.015 E
c
0
+: O.Q1 " c
:I ---~ 0.005 +-----------------------------;
QI ·::;.

0 '''""' '""'" ""'" "'

Wall Clock

Figure 40. Time measurement of the yield() function.

CHAPTER 8 CONCLUSION

The goal of this work was to address the generality, scalability, and portability problems

associated with user-level applications needing real-time audio synthesis. The user-level application

www.manaraa.com

96

domains we specifically addressed were virtual environments, scientific sonification, and real-time

interactive music for composition and performance. We reviewed existing audio synthesis tools,

many which of were limited by being too specialized or not portable enough. After this review work,

we determined that a new tool was needed. We developed Subsynth, a generic audio synthesis

framework for real-time applications. This new tool is meant to enable scalability and portability in

higher-level applications and tools that need access to audio synthesis capabilities.

This thesis illustrates the feasibility of developing a generically configurable audio synthesis

toolkit that meets the needs of several application domains including virtual environments, interactive

composition and performance, and scientific sonification. Subsynth addresses the requirements we

have set out for a generic audio synthesis subsystem that would be useful to these real-time

interactive applications. Configurability is addressed in the design of the Module, Terminal,

Connection framework that allows connection and control of modules in any way. Extendibility is

possible in the Subsynth design including the unit generator framework, execution environment, and

configuration system. Portability is addressed since Subsynth makes use of cross platform tools and

otherwise uses only C++ compliant code. Our case studies showcase that Subsynth has useful

synthesis methods, exhibits real-time interactivity, and provides an interface that promotes intuitive

control by the application. Because it is implemented in software, Subsynth offers a way to get the

same consistent sound across a variety of computing systems. In addition, the tool can be upgraded

transparently by simply running it on a computer with more, or more powerful, processors-

something not available from most hardware synthesizers. As a proof of concept, Subsynth meets our

requirements expectations. As an actual tool, the current status of Subsynth allows it to be usable in a

good range of applications, although additional work is required to finalize the implementation of the

complete range of features. The next chapter discusses the potential directions, both conceptual and

practical, that Subsynth can take.

www.manaraa.com

97

CHAPTER 9 FUTURE WORK

Subsynth is intended as a long-term research project, which will eventually find its way into a

number of virtual reality and multimedia applications. As such, there are a number of directions for

future research.

Subsynth needs optimization work done on the multithreading runner. The runner needs a

scheduler that can order the task operations more optimally, based on graph dependency and

watermarking needs. This sort of work could involve some kind of dynamic scheduler, rather than

the included static Scheduler design.

Subsynth should provide more unit generators. Particularly lacking are good low-, high-, and

band-pass filters. Although Subsynth has acceptable low- and high-pass filters, they are not of good

quality and could be improved. For virtual environments, Subsynth especially needs filters for echo

and 3D spatialization. For interactive music and sonification, delay and distortion filters could be

useful. An authoring tool for instruments would be a useful and short-term project idea to introduce a

student to audio synthesis and GUI programming. Additionally, the unit generators need

optimizations, such as reducing the number of conditionals that are within inner loops, processing

control signals at a reduced rate, and optimizing mathematical functions such as sine and exponential

calculation using approximations such lookup tables or processor tricks.

Currently, the Subsynth MIDI implementation is very basic allowing simple MIDI interaction

such as pitch, velocity,, and trigger. Access to many more parameters is possible through MIDI sysex,

and MIDI control messages. Since Subsynth is portable to most computing systems, using sysex

becomes an option because we can rely on this proprietary feature of MIDI (tied to Subsynth) without

worry of it not being available.

Finally, more applications need to be written on top of Subsynth to promote development and to

work out functionality and usability flaws. Obvious application types include those from the domains

www.manaraa.com

98

laid out in the requirements section. Additionally, we have some specific ideas of research tools that

we particularly feel would be interesting to develop with Subsynth:

• Modulation Synthesis Parameter Selection Using Brute Force Techniques: Earlier,

we explained how modulation synthesis could be used to create very simple instruments

that yield very complex sound. The drawback with this technique, as we explained, was

that that the parameters to specify the modulation synthesis instrument are unintuitive and

hard to get right. Therefore, we feel that it would be interesting to use the brute-force

techniques described by the field of artificial-life [Ashlock02]. These techniques have the

ability to evolve the parameters of modulation synthesis instruments in a controlled way

to converge upon an optimal solution. This best solution would allow us to achieve a

closer match to real world instruments using these computationally inexpensive unit

generators. We hypothesize that the fitness function could be based on the spectra

(frequencies) found in the source and destination waveforms.

• Visual Authoring Tools for Synthesis Networks: With the interactive realities

becoming more available to average consumers through console gaming systems and

more advanced VR systems, authoring ~ools will become necessary for people to

customize "their piece of the Internet." This is similar to how HTML and web browsers

have enabled mass participation with the current Internet. With access to more advanced

equipment for less money, there will be a growing need to improve interaction techniques

with virtual worlds. One especially useful application will be simple intuitive authoring

tools that offer these powerful manipulation techniques [RealtimeVR][Otherland]. Sound

will be a part of these authoring tools. Users will need to set up a range of sonification

methods from this tool. Primarily, it should support creation of sounds and the ability to

link them to triggers placed in the virtual environment. Sound attributes such as

www.manaraa.com

99

frequency, volume, and timbre, should be available to modify and link to other triggers.

Specific sound and music research tools could also be made. Subsynth provides a very

flexible audio backend to support these needs. It would be interesting to use Subsynth to

enable some of these virtual environment authoring tools.

In summary, there is much potential to build upon a generic audio synthesis tool such as

Subsynth. A tool such as this could open the door to many research topics while remaining a very

generic audio toolkit that creative applications could exploit.

www.manaraa.com

100

Appendix A
;**
instr 1 Tabl'e Based Rezzy Synth

[from http:llwww.csounds.comlmikelsonl (6.6.2002))

idur
iamp
ifqc
irez
itabll

p3
p4
cpspch(p5)
p7
pB

; Amplitude envelope
kaenv linseg 0, .01, l, p3-.02, 1, .01, 0

; Frequency Sweep
kfco linseg .l*p6, .5*p3, p6, .5*p3, .l*p6

; This relationship attempts to separate Freq from Res.
kal lOOlirezlsqrt(kfco)-1
ka2 = lOOOlkfco

; Initialize Yn-1 & Yn-2 to zero
aynml init 0
aynm2 init 0

Oscillator
axn oscil iamp, ifqc, itabll

Replace the differential eq. with a difference eq.
ayn = ((kal+2*ka2) *aynml-ka2*aynm2+axn) I (l+kal+ka2)
aynm2 aynml
aynml = ayn

Amp envelope a:nd output
aou t = ayn * k,3.env
out aout

endin

(

Listing 8. Example of an instrument defined in CSound's instrument definition scripting
language.

II synthetic pia::io 2: from www.audiosynth.com (6.6.2002)
var n, keynote;
n = 6; II number of keys playing
keynote = 12.rand;
Synth.play({
var z;
z = Mix.arFill(:n, { II mix an array of notes
var delayTirne, pitch, detune, strike, hamrnerEnv, hammer;

II calculate delay based on a random note
pitch= [0,2,4,5,7,9,11) .choose + [0,12,24,36) .choose+ 36 +keynote;
strike= Dust.ar(0.2+0.4.rand, 0.1); II random period for each key
harnmerEnv = Decay2.ar(strike, 0.008, 0.04); II excitation envelope
Pan2.ar(

II array of 3 strings per note
Mix.ar(Array.fill(3, { arg i;

II detune strings, calculate delay time
detune= #[-0.05, 0, 0.04) .at(i);
delayTirne = 1 I (pitch + detune) .rnidicps;
II each stri:-ig gets own exciter :

www.manaraa.com

101

hammer= LFNoise2.ar(3000, hammerEnv); II 3000 Hz was chosen by ear ..
CombL.ar(hammer, II used as a string resonator

delayTime, II max delay time
delayTime, II actual delay time
6) II decay time of string

})) '
(pitch - 36)/27 - 1 II pan position: lo notes left, hi notes right

)
}) ;
4 .do ({

z = AllpassN.ar(z, 0.040, [0.040.rand,0.040.rand), 8)
}) ;
z

})
)
(
II synthetic piano 3
var n, keynote;
n = 10; /I number of keys playing
keynote = 12.rand;
Synth.play({
var z;
z = Mix.arFill(n, { II mix an array of notes
var delayTime, pitch, detune, strike, hammerEnv, hammer;

II calculate delay based on a random note
pitch= [0,2,4,5,7,9) .choose+ [0,12,24,36] .choose+ 36 +keynote;
strike= Dust.ar(0.1+0.2.rand, 0.1); II random period for each key
hammerEnv = DE~cay2.ar(strike, 0.015, 0.04); II excitation envelope
Pan2.ar(

II array of 3 strings per note
Mix.ar(Array.fil1(3, { arg i;

II detune strings, calculate delay time
detune= #[--0.05, 0, 0.04] .at(i) ;
delayTime = 1 I {pitch + detune) .midicps;
II each string gets own exciter :
hammer= LFNoise2.ar(3000, hammerEnv); II 3000 Hz was chosen by ear ..
CombL.ar(hammer, II used as a string resonator

delayTime, II max delay time
delayTime, II actual delay time
6) II decay time of string

})) '
(pitch - 36)/27 - 1 II pan position: lo notes left, hi notes right

)
}) ;
6 .do ({

z = AllpassN.ar(z, 0.040, [0.040.rand,0.040.rand], 8)
}) ;
z

})
)

Listing 9. Example of a SuperCollider script.

www.manaraa.com

<?xml version="l.0"?>
<instruments>

102

<instrument name="wave sample player">
<module type="WaveTableOsc" name="Tone">

<setparam name="filename" value="snare-singleshot.wav"/>
<setparam name="samplebased" value="l"/>
<setparam name="basefreq" value="440"/>
<setparam name="loop" value="O"/>
<setparam name="interp" value="l"/>
<setparam name="retrig" value="l"/>
<setparam name="freq" value="440"/>
<setparam name="freqcontrol" value="l"/>
<setparam name="freqcontrolsens" value="l"/>
<setparam name="trigger" value="l"/>

</module>
<module type="AdsrEnv" name="ADSRl"/>
<module type="Mult" name="Multl"/>
<module type="Mult" name="Atten"/>

<connection>
<output name="mono audio" module="Tone"/>
<input name="mono audioO" module="Multl"/>

</connection>
<connection>

<output name="mono audio" module="ADSRl"/>
<input name="mono audiol" module="Multl"/>

</connection>
<connection>

<output name="mono audio" module="Multl"/>
<input name="mono audioO" module="Atten"/>

</connection>

<exposeoutput name="mono audio">
<output name="mono audio" module="Atten"/>

</exposeoutput>

<exposeparam name="velocity">
<param name="constant" module="Atten"/>

</exposeparam>
<exposeparam name="freq">

<param name="freq" module="Tone"/>
</exposeparam>
<exposeparam name="freqcontrol">

<param name="freqcontrol" module="Tone"/>
</exposeparam>
<exposeparam name="freqcontrolsens">

<param name="freqcontrolsens" module="Tone"/>
</exposeparam>
<exposeparam name="trigger">

<param name="trigger" module="ADSRl"/>
<param name="trigger" module="Tone"/>

</exposeparam>
</instrument>

</instruments>
Listing 10. An example of a Subsynth instrument definition file.

www.manaraa.com

103

Appendix B
narnespace ac
{

struct InisLarger
{

} ;

template <typenarne _in, typenarne out>
static void execute(const _in& i, _out& o }
{

const in in_range = (_in} (((float}audio_data_traits<_in>::range} I
(float} 4);

const in in_min = (_in)audio_data_traits<_in>::min;
const _out out_range =

(_out) (((float)audio_data_traits<_out>: :range) I (float)4);
const _out out_min = (_out)audio_data_traits<_out>::min;

II offset by <in>: :min, then scale, then offset back by <out>: :min
const in scale= ((_in)out_range) I in_range;
const in inv_scale = in_range I ((_in)out_range);
if (scale != 0.0) II float to int (float mult, 2 adds)

o (_out) (((i - in_min) *scale) + out_min);
else II 16 to 8 bit (shift right, 2 adds)

o (_out) (((i - in_min) I inv_scale) + out_min};

struct OutisLarger
{

} ;

template <typenarne _in, typenarne out>
static void execute(const _in& i, _out& o)
{

const in in_range = (_in) (((float)audio_data_traits<_in>::range) I
(float) 4);

const in in_min = (_in)audio_data_traits<_in>::min;
const _out out_range =

(_out) (((float)audio_data_traits<_out>::range) I (float)4);
const _out out_min = (_out)audio_data_traits<_out>::min;

const out scale= out_range I ((_out)in_range);
SYN_STATIC_ASSERT(scale != (_out)0.0);

II 8 to 16 bit conversion (shift left, 2 adds)
II integer to float (float mult, 2 float adds)
o = (_out) (((i - in_min) *scale) + out_min};

struct Adjust
{

} ;

template <typename _in, typenarne _out>
static void execute(const in& i, _out& o)
{

}

if (i >= 0.9999f)
o -= (_out}l;

struct DoNothing
{

} ;

template <typenarne a, typenarne b>
static void execute(a aa, b bb) {}

struct Copy
{

template <typenarne _in, typenarne _out>

www.manaraa.com

104

static void execute(const _in& i, _out& o) { o
} ;
II some flags needed by audio_convert
template <typename in, typename out>
struct Flags
{

} ;

II are the two datatypes the same?
static const bool types_are_the_same;

II is the 1st one float and the 2nd one int?
static const bool float_to_int;

II until type_info::operator==() works statically,
II this will have to do ...
template <typename in, typename out>

(_out) i; }

const bool Flags<in,out>::types_are_the_same
audio_data_traits<in>: :max == audio_data_traits<out>: :max;

template <typename in, typename out>
const bool Flags<in,out>::float_to_int

audio_data_traits<in>: :range == audio_data_traits<float>: :range &&
audio_data_traits<out>: :range != audio_data_traits<float>: :range;

/** convert one audio sample to a sample of a different format
* currently works for any type of data supported by audio_data_traits.
*/

template <typename in, typename out>
inline void audio_convert(const in& i, out& o)
{

II in== out: Copy, in> out: InisLarger, out > in: OutisLarger
meta::IF<ac: :Flags<in,out>::types_are_the_same, ac: :Copy,

/*else*/ meta::IF<sizeof(in) >= sizeof(out), ac::InisLarger,
/*else*/ ac::OutisLarger>: :RET >
: :RET: :execute(i, o) ;

II degenerate case: converting float(l.0) to int yields 0 (incorrect), fix
meta: :IF<ac::Flags<in,out>::float_to_int, ac::Adjust,

/*else*/ ac: :DoNothing>
::RET::execute(i, o);

Listing 11. Template metaprogramming audio format conversion routine.

www.manaraa.com

105

Appendix C
<?xrnl version="l.0" ?>
<!DOCTYPE article PUBLIC "-//vrac//lsystem V0.1.2//EN"

"http://www.vrac.iastate.edu/-kevn/lsystem.dtd">
<root>

<lsystem>
<axiom>

<lstring>
<!-- strings are composed of elts, not characters

an "el t" is a sort of "super character" .
-->

<elt name="TEMPO">
<param id="0">0</param>
<param id="l">${cg}</pararn>

</elt>
<elt narne="DUR">

<param id="O">O</param>
<param id="l">${cg}</param>

</elt>
<elt name="PROGCHANGE">

<param id="O">O</param>
<param id="l">O</param>
<param id="2">25</param>

</elt>
<elt name="NOTE">

<param id="0">0</param>
<param id="l">60</param>
<param id="2">0</param>
<param id="3">0.7</param>

</elt>
<elt name="NOTE">

<param id="0">${DUR}</param>
<param id="l">60</param>
<param id="2">0</param>
<param id="3">0</param>

</elt>
</lstring>

</axiom>
<!-- define replacement rules -->
<rules>

<rule type="exact"> <!-- can specify regex or exact matching -->
<!-- for every place in the base string that matches this -->
<match>

<lstring>
<elt name="NOTE">

<param id="O">O</pararn>
<param id="l">62</param>
<param id="2">0</param>
<param id="3">${t}</param>

</elt>
<elt name="NOTE">

<param id="0">${DUR}</param>
<param id="l">62</param>
<param id="2">0</param>
<param id="3">0</param>

</elt>
</lstring>

</match>
<!-- ... replace it with this-->

<replace>
<lstring>

<elt name="DUR*">
<param id="0">0</param>
<param id="l">0.5</param>

</elt>

www.manaraa.com

106

<elt name="NOTE">
<param id="0">0</param>
<param id="l">62</param>
<param id="2">0</param>
<param id="3">${t}</param>

</elt>
<elt name="NOTE">

<param id="0">${DUR}</param>
<param id="l">62</param>
<param id="2">0</pararn>
<param id="3">0</param>

</elt>
<elt name="NOTE">

<param id="0">0</param>
<param id="l">58</param>
<param id="2">0</param>
<param id="3">${a}</param>

</elt>
<elt name="NOTE">

<param id="0">${DUR}</pararn>
<param id="l">58</param>
<param id="2">0</param>
<param id="3">0</param>

</elt>
<elt name="DUR*">

<param id="0">${a}</param>
<param id="l">2</param>

</elt>
</lstring>

</replace>
</rule>

</rules>
</lsystern>

</root>
Listing 12. Example music L-system, using the L-system XML schema specified by G.A.M.E.

www.manaraa.com

[AiffSpec]

[AlexandrescuOl]

[Apache]

[Ashlock02]

[ASIO]

[AuditoryDisplay]

[Auditory Icons]

[Balking]

[Bryden02]

[Cake]

[Chowning73]

[CppDOM]

[Creative]

[CreativeDev]

107

BIBLIOGRAPHY

Audio Interchange File Format, http://www.borg.com/-jglatt/tech/aiff.htm,
verified June 06 2002

A. Alexandrescu, Modem C++ Design: Generic Programming and Design
Patterns Applied, Addison Wesley Professional, 2001

Apache Software Foundation, http://www.apache.org, verified August 5
2002

Evolutionary Computation for Modeling and Optimization Online Lecture
Notes http://www.math.iastate.edu/danwell/ma3 78/ln37 8.html, verified June
06 2002

ASIO Developer Website,
http://www.steinberg.net/developers/ASI02SDKAbout.phtml, verified June
06 2002 .

G. Kramer, Auditory Display, "Auditory display of computational fluid
dynamics data", p327

G. Kramer, Auditory Display, W. Gaver, "Using and creating auditory
icons", p417

M. Grand, "Balking Pattern",
http://www.clickblocks.org/patternsl/pattem_synopses.htm#Balking,
verified June 06 2002

K. Bryden, K. Meinert, D. Ashlock, and K. Bryden. "Transforming Data into
Music Using Fractal Algorithms", paper to be presented at ANNIE 2002, St.
Louis, Missouri, November 10-13.

Twelvetone Systems, "Cakewalk Music Software",
http://www.cakewalk.com, verified August 5 2002

J. Chowning. C. Roads. J. Strawn. "The synthesis of complex audio spectra
by means of frequency modulation.". "Journal of the Audio Engineering
Society". Foundations of computer music (reprinted in C. by Roads, Strawn).
CambridgeMA. 1973. MIT Press.

CppDOM Toolkit Homepage, http://xml-cppdom.sf.net, verified June 06
2002

Creative Labs Open Source Website, http://opensource.creative.com/,
verified June 06 2002

Creative Labs Developer Website, http://developer.creative.com/, verified
June 06 2002

www.manaraa.com

108

[CSound] Massachusetts Institute of Technology, "CSound audio synthesis program".
CSound Website, http://www.csounds.com/, verified June 06 2002.

[CsoundRef] The Public CSound Manual: Version 4.16,
http://www.lakewoodsound.com/csound/hypertext/manual.htm, verified June
06 2002.

[Deatherage72] B. Deatherage, "Auditory and Other Sensory Forms of Information
Presentation." In Van Cott and Kinkade (Eds.), Human Engineering Guide to
Equipment Design, Revised Ed., Washington: U.S. Gov't Printing Office,
1972, p. 124.

[Dodge97] C. Dodge, T. Jerse, Computer Music, Second Edition, Schirmer Books, 1997

[Earcons] M. Blattner, A. Papp, E. Glinert, "Sonic Enhancement of two dimensional
graphics displays", G. Kramer, Auditory Display, p447

[Flyweight] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, pp 195,
Addison-Wesley, 1995

[FouadOO] H. Fouad, J. A. Ballas, D. Brock, "An extensible toolkit for creating virtual
sonic environments", in 'Proceedings oflnternational conference on auditory
displays 2000', !CAD, Atlanta, Georgia, USA.

[Fruityloops] Image-Line Software, "Fruityloops music composition tool",
http://www.fruityloops.org, verified June 06 2002.

[GameGemsl] M. DeLoura, Game Programming Gems, Charles River Media, 2000

[GameGems2] K. Weiner, "Interactive Processing Pipeline for Digital Audio", Game
Programming Gems 2, pp 529-538. Charles River Media, Inc.

[Gamma95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Addison-
Wesley, 1995

[Genome] The Human Genome Project - http://www.ornl.gov/hgmis/, verified June 06
2002.

[GuardedSuspension] M. Grand, "Guarded Suspension Pattern",
http://www.clickblocks.org/patterns l/pattern_synopses.htm#Guarded %20Sus
pension, verified June 06 2002.

[HRTF] K. Pimentel, K. Teixeira, Virtual Reality Through the New Looking Glass,
Second Edition, pp 168, Windcrest McGraw-Hill, 1995

[Id] Id Software, http://www.idsoftware.com, verified August 10, 2002

[Interp] C. Roads. The Computer Music Tutorial. "Waveform Segment Techniques",
p. 320, MIT Press. 1996. 81. Copyright © 1996 Massachusetts Institute of
Technology

[IoStream] C++ iostream library reference, http://www.cplusplus.com/ref/iostream/

www.manaraa.com

[Kaper98]

[Kemighan88]

[Kramer94]

[Kramer97]

[Lsystem]

[Mandelbrot77]

[ManimaranO 1]

[Mathews69]

[MIDISpec]

[Moore98]

[MP3Fraunhofer]

[MP3Spec]

[MPI]

[Murray96]

[NSPR]

[OpenAL]

[Ogg]

[OpenSG]

109

H. Kaper, S. Tipei, "Manifold Compositions, Music Visualization, and
Scientific Sonification in an Immersive Virtual-Reality Environment." In the
proceedings of the Int'l Computer Music Conference '98, Ann Arbor,
Michigan (October 1998), pp. 399-405

B. Kernighan, D. Ritchie, C Programming Language (2nd Edition), Prentice
Hall, 1988

G. Kramer, Auditory Display: Sonification, Audification, and Auditory
Interfaces, Perseus Publishing, 1994

G. Kramer. et al. "Sonification Report: Status of the Field and Research
Agenda". 1997. http://www.icad.org/website V2.0/References/nsf.html,
verified June 06 2002.

P. Prusinkiewicz, A. Lindenmayer, P. Prusinkiewicz, M. Cutter, The
Algorithmic Beauty of Plants, Springer Verlag, 1990

B. Mandelbrot, Fractals: Form, Chance and Dimension, 1977

G. Manimaran, C. Siva Ram Murthy, Resource Management in Real-Time
Systems and Networks, p 4, MIT Press, 2001

M. Mathews. "The technology of computer music." Proceedings of ACM
Symposium on User Interface Software and Technology. Cambridge MA.
1969. MIT Press.

MIDI Specification, http://www.borg.com/-jglatt/tech/rnidispec.htm, verified
June 06 2002.

F. Moore, Elements of Computer Music, Prentice Hall, 1998

Fraunhofer MPEG Layer 3 Info, http://www.iis.fhg.de/arnmltechinf/layer3/,
verified June 06 2002.

Inside the MP3 Codec, http://www.mp3-converter.com/mp3codec/, verified
June 06 2002.

W. Gropp, E. Lusk, A. Skjellum, Using MP/: Portable Parallel
Programming with the Message-Passing Interface, MIT Press, 1999

J. Murray, W. VanRyper, Graphics File Formats, p. 179, O'Reilly &
Associates, 1996

The Netscape Portable Runtime, http://www.mozilla.org, verified June 06
2002.

Creative Labs, Loki Entertainment, "The OpenAL audio API'',
http://www.openal.org, verified June 06 2002.

Ogg Website, http://www.vorbis.com/, verified June 06 2002.

OpenSG Website, http://www.opensg.org, verified June 06 2002.

www.manaraa.com

110

[OSI] Open Source Initiative, http://www.opensource.org, verified June 06 2002.

[Otherland] T. Williams, Otherland: Volume One, City Of Golden Shadow, Daw Books,
Inc, 1997

[Pausch92] R. Pausch, T. Crea, M. Conway, "A Literature Survey for Virtual
Environments: Military Flight Simulator Visual Systems and Simulator
Sickness." Presence 1(3), pp 344-363, MIT Press, 1992

[Pierce92] J. Pierce. The science of musical sound (2nd ed.), New York. 1992. W. H.
Freeman and Company.

[PortAudio] PortAudio Website, http://www.portaudio.com/, verified June 06 2002.

[ProducerConsumer] M. Grand, "Producer/Consumer Pattern",
http://www.clickblocks.org/pattemsl/pattern_synopses.htm#Producer-
Consumer, verified June 06 2002.

[Propellerheads] Propellerheads, "Reason and Rebirth music composition tools",
http://www.propellerheads.se mozilla NSPR website

[RealtimeVR] K. Pimentel, K. Teixeira, Virtual Reality Through the New Looking Glass,
Second Edition, pp 108-109, Windcrest McGraw-Hill, 1995

[Roads96] C. Roads. The Computer Music Tutorial. MIT Press. 1996. 81. Copyright©
1996 Massachusetts Institute of Technology.

[Rockstar] Rockstar Games, http://www.rockstargames.com/, verified August 10, 2002

[Sonification] K. Pimentel, K. Teixeira, Virtual Reality Through the New Looking Glass,
Second Edition, pp 98-100, Windcrest McGraw-Hill, 1995

[SCEI] Sony Computer Entertainment Inc., Ico,
http://www.icothegame.com/en_GB/index.htm, verified August 10, 2002

[Steiglitz96] K. Steiglitz, A DSP Primer: With Applications to Digital Audio and
Computer Music, Addison-Wesley Pub Co, 1996

[StroustrupOO] B. Stroustrup, The C++ Programming Language, Addison-Wesley Pub Co,
2000

[SuperCollider] SuperCollider Website, http://www.audiosynth.com/, verified June 06 2002.

[UML] Unified Modeling Language, http://www.omg.org/urnl/, verified August 5
2002

[VBAP] V. Pulkki, "Virtual Source Positioning Using Vector Base Amplitude
Panning", Journal of the Audio Engineering Society 45, 6 (1997), 456-466.

[Visualization] A. Watt, M. Watt, Advanced Animation and Rendering Techniques: Theory
and Practice, p. 297, Addison Wesley, 1995

www.manaraa.com

[VRJuggler]

[VRAC]

[VSS]

[WavSpec]

[XML]

111

A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-Neira,
"VR Juggler: A Virtual Platform for Virtual Reality Application
Development". Published at IEEE VR 2001, Yokohama, March 2001.

Virtual Reality Applications Center, http://www.vrac.iastate.edu, verified
August 10, 2002

NCSA Sound Server Reference Manual,
http://www.isl.uiuc.edu/software/vss_reference/vss3.0ref.html, verified June
06 2002.

WA VE File Format, http://www.borg.com/-jglatt/tech/wave.htm, verified
June 06 2002.

Extensible Markup Language (XML), http://www.w3.org/XML/, verified
August 5, 2002

	Subsynth: A generic audio synthesis framework for real-time applications
	Recommended Citation

	Subsynth: A generic audio synthesis framework for real-time applications

